

CS 485
Advanced Object Oriented Design

Dynamic Memory

Spring 2017

pointers! new/delete
● Dynamic memory

● What does that mean?
● Why do we want it?
● Where does it come from?
● How do we get it?

● Design Techniques
● RAII

– resource acquisition is initialization
● constructor/destructor

● CopyAndSwap

Don’t use
malloc/free
in C++

const

const int * pData;

int const * pData;

int * const pData;

const int * const pData;

int const * const *pData;

const applies to the type to the immediate left,
however you can put const as the left most token
and then it applies to the immediate right.

http://c-faq.com/decl/spiral.anderson.html

NULL vs nullptr
● NULL is really an int

● nullptr is its own type (std::nullptr_t)

void foo(int *ptr);
void foo(int data);

foo(NULL); // who gets called?
foo(nullptr); // who gets called?

auto ptr = NULL;
auto ptr2 = nullptr;

cout << typeid(ptr).name();
cout << typeid(ptr2).name();

various new C++11 std:: functions take only nullptr

legacy C code may not work with nullptr!

Classes that contain dynamic memory

● Or any dynamic resource (file, network, ...)

class bigData
{
 public:

 bigData();
 ~bigData();
 bigData(const bigData &rcData);

// bigData& operator=(const bigData &rcData);

 // you cannot declare both operator= at the same time!
 bigData& operator=(bigData cData); //force copy constructor to be called

 private:
 int *mpHugeData = nullptr;
}

copy-and-swap

bigData::bigData(const bigData &rcData)
{
 // let’s assume this is written and works correctly
}

bigData& bigData::operator=(bigData cData)
{
 // what happens when cBigData1 = cBigData2; is executed?

 // what happens when operator= terminates?

}

Smart Pointers
● C++11 wrapper classes to manage pointers

● RAII for pointers
● <memory>

● unique_ptr

● shared_ptr

● weak_ptr

https://msdn.microsoft.com/en-us/library/hh279674.aspx

http://umich.edu/~eecs381/handouts/C++11_smart_ptrs.pdf

Lab - use raw pointers
● You must write your own string class, backed by

a dynamic char array.
● The string class must implement the interface

provided.
● PacString.h

● Use the provided test driver. main.cpp
● make sure there are no memory leaks
● determine how many times each of the following is

called by the test driver:
– default constructor
– constructor (const char *)
– copy constructor
– destructor

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

