

CS460
Pacific University 25

CS460_Life
● "Your code must contain a comment explaining how you will
divide up the work among the N threads. The plurality of points
for M1 will be given to the comment."

● How will you divide the work among the threads?

● What data will be shared by multiple threads?

● What data will need to be synchronized/protected across
threads?

● What happens to each thread at the end of a generation?

● Clarification: 4 threads means you can have 4 threads and
main() (really 5 threads) active at any one time.

CS460
Pacific University 26

// all threads share one struct

typedef struct ThreadArgs
{

// data, mutex, and cond to signal a thread to start
int startFlag ;
pthread_mutex_t sStartMutex;
pthread_cond_t sStartWaitCond;

// data, mutex, and cond to signal that all threads have finished

int finishedFlag ; // initialize to zero
pthread_mutex_t sFinishedMutex;
pthread_cond_t sFinishedWaitCond;

} ThreadArgs;

CondWaitThread.c

CS460
Pacific University 27

Thread One - the waiting thread -- wait for 2 other threads to finish

pthread_mutex_lock(&sThreadArg.sFinishedMutex);

while(2 != sThreadArg.finishedFlag)
{

 // only one thread should call pthread_cond_wait
 // per pthread_cond_t

 pthread_cond_wait(&sThreadArg.sFinishedWaitCond,
 &sThreadArg.sFinishedMutex);

}

sThreadArg.finishedFlag = 0;

pthread_mutex_unlock(&sThreadArg.sFinishedMutex);

CS460
Pacific University 28

Thread Two and Three - the finishing threads

// psThreadArg is a pointer to sThreadArg

pthread_mutex_lock(&psThreadArg->sFinishedMutex);

psThreadArg->finishedFlag ++;

pthread_mutex_unlock(&psThreadArg->sFinishedMutex);

// many threads may call pthread_cond_signal
// for each pthread_cond_t

pthread_cond_signal(&psThreadArg->sFinishedWaitCond);

