
1 CS 460 Scheduling Lab
2
3 Shutdown VB and change the System to use 2 CPUs.
4
5 Open terminator!
6
7 wget http://zeus.cs.pacificu.edu/chadd/cs460s18/SchedLab.tar.gz
8
9 tar xzf SchedLab.tar.gz
10
11 cd CS460_SchedulingLab
12
13 make
14
15 This produces a number of executables. We will only use some
16 of these executables today.
17
18 Split the terminator window horizontally.
19
20 Split the bottom window vertically.
21
22
23 CONFIGURE TOP
24
25 In the top window:
26
27 taskset -c 0 top -u punetid
28
29 V
30 H
31 f
32 <arrow down to P = Last Used CPU>
33 <space>
34 <arrow up to %CPU>
35 s
36 q
37 s .3
38
39
40 RUN THE EXECUTABLES:
41
42 In either small window:
43
44 Try out a few of the executables. Note how much work each executable
45 reports it has done and how many voluntary and involuntary context
46 switches occur.
47

- 1 -

48 ./sleeper 20
49
50 Work: __________________________ VOL CS: _____ IVOL CS: __________
51
52 ./CPU 20
53
54 Work: __________________________ VOL CS: _____ IVOL CS: __________
55
56 ./IO 20
57
58 Work: __________________________ VOL CS: _____ IVOL CS: __________
59
60 Each of the previous executables takes a command line argument that
61 is the runtime in seconds for the process. In the above examples,
62 each process should run for very close to 20 seconds.
63
64 Each executable reports the amount of work done and the number
65 of voluntary and involuntary context switches done by that process.
66
67 sleeper just continually calls sleep(1) until the runtime is expired.
68
69 CPU runs a for loop and does some calculations until the runtime
70 is expired.
71
72 IO runs a for loop and prints data to stderr until the runtime is
73 expired.
74
75
76 Group the two smaller windows.
77
78 Box menu | New Group ... <enter>
79
80 Box menu | select group
81
82
83 Alt-G <send input to all windows in a group>
84
85 ./CPU 20 # should appear in both small windows
86
87
88 ./CPU 20
89
90 Work: __________________________ VOL CS: _____ IVOL CS: __________
91
92
93 ./CPU 20
94

- 2 -

95 Work: __________________________ VOL CS: _____ IVOL CS: __________
96
97
98 How does the amount of work compare for the two processes?
99
100 How does the amount of work compare against a single ./CPU 20 process?
101
102
103 Let's restrict both processes to the same CPU:
104
105 taskset -c 1 ./CPU 20 # should appear in both small windows
106
107 taskset -c 1 ./CPU 20
108
109 Work: __________________________ VOL CS: _____ IVOL CS: __________
110
111
112 taskset -c 1 ./CPU 20
113
114 Work: __________________________ VOL CS: _____ IVOL CS: __________
115
116
117 How does the amount of work compare for the two processes?
118
119 How does the amount of work compare against two CPU processes running
120 without being restricted to a CPU?
121
122
123 Let's restrict both processes to different CPUs:
124
125 Alt-O # Alt-Oh ungroup input
126
127 Type in each command below but don't press enter.
128
129 Alt-G # regroup input
130
131 Press enter
132
133 taskset -c 0 ./CPU 20
134
135 Work: __________________________ VOL CS: _____ IVOL CS: __________
136
137
138 taskset -c 1 ./CPU 20
139
140 Work: __________________________ VOL CS: _____ IVOL CS: __________
141

- 3 -

142
143 How does the amount of work compare for the two processes?
144
145 How does the amount of work compare against two CPU processes running
146 without being restricted to a CPU?
147
148
149
150 Let's add a sleeper process to the same CPU:
151
152 Alt-O # ungroup input
153
154 Type in each command below but don't press enter.
155
156 Alt-G # regroup input
157
158 Press enter
159
160 taskset -c 1 ./CPU 20
161
162 Work: __________________________ VOL CS: _____ IVOL CS: __________
163
164
165 taskset -c 1 ./sleeper 20
166
167 Work: __________________________ VOL CS: _____ IVOL CS: __________
168
169
170 How does the amount of work compare for the two processes?
171
172 How does the amount of work compare against two CPU processes running
173 without being restricted to a CPU?
174
175
176
177 Let's add an IO process to the same CPU:
178
179 Alt-O # ungroup input
180
181 Type in each command below but don't press enter.
182
183 Alt-G # regroup input
184
185 Press enter
186
187 taskset -c 1 ./CPU 20
188

- 4 -

189 Work: __________________________ VOL CS: _____ IVOL CS: __________
190
191
192 taskset -c 1 ./IO 20
193
194 Work: __________________________ VOL CS: _____ IVOL CS: __________
195
196
197 How does the amount of work compare for the two processes?
198
199 How does the amount of work compare against two CPU processes running
200 without being restricted to a CPU?
201
202
203
204
205 SCHEDULING
206
207 Linux has a number of scheduling algorithms available:
208
209 Real time processes:
210 SCHED_FIFO
211 SCHED_RR
212
213 Everything else:
214 SCHED_OTHER
215 SCHED_BATCH
216 SCHED_IDLE
217
218 Read the man page for sched to understand each algorithm.
219
220 Step 0:
221
222 schedTest launches 5 threads (via pthreads) and pins those threads
223 to core 1 and sets the scheduling policy based on the command line
224 argument given. R is RR and F is FIFO.
225
226 Each thread prints 10 messages containing the thread ID, a progress
227 number, and a time stamp.
228
229 At the end, schedTest prints out the number of voluntary and
230 involuntary context switches that occurred.
231
232 Note: all output happens just before a process terminates so as to not
233 generate any extra context switches via printf.
234
235 time sudo ./schedTest R

- 5 -

236
237 time sudo ./schedTest F
238
239 Does it seem like the scheduler is working correctly?
240
241 Justify your answer.
242
243
244
245 Step 1:
246
247 Note: RT scheduling priorities run from 1-99. 99 is highest priority
248
249 Note: all output happens just before a process terminates so as to not
250 generate any extra context switches via printf.
251
252 schedTestFork launches argv[3] processes (via fork()) and pins
253 those threads to core 1 and sets the scheduling policy based on
254 argv[1]. R is RR and F is FIFO, B is BATCH, I is IDLE, O is OTHER.
255
256 Each thread prints 10 messages containing the thread ID, a progress
257 number, and a time stamp.
258
259 argv[2] sets the priority of each process via:
260 (threadid % argv[2]) + 1 # threadid starts at 0 and increments by 1
261
262 As each process ends, the counts of voluntary and involuntary context
263 switches are listed.
264
265 Run each of the following command individually.
266
267 Because schedTestFork changes its scheduling algorithm, you must
268 run schedTestFork with root privileges.
269
270 time sudo ./schedTestFork R 1 2
271
272 time sudo ./schedTestFork R 98 2
273
274 time sudo ./schedTestFork F 1 2
275
276 time sudo ./schedTestFork F 98 2
277
278
279 Does it seem like the scheduler is working correctly?
280 Justify your answer.
281
282

- 6 -

283 Step 1.1:
284 In a split Terminator window, run the following with grouped input:
285
286 time sudo ./schedTestFork R 98 2
287 time ./CPU 20 work: _________________________
288
289 time (real): __________________
290
291 Just in one terminal alone:
292 time taskset -c 1 ./CPU 10 work: _________________________
293
294 time (real): __________________
295
296
297
298 time sudo ./schedTestFork R 98 10
299 time taskset -c 1 ./CPU 10 work: _________________________
300
301 time (real): __________________
302
303
304 time sudo ./schedTestFork R 98 20
305 time taskset -c 1 ./CPU 10 work: _________________________
306
307 time (real): __________________
308
309
310 What happens to the work for CPU?
311
312 What happens for the real time for CPU?
313
314
315 Start in 2 way terminator window to see how processes with different
316 scheduling algorithms interact.
317
318 The important behavior to watch for is what order the processes
319 complete in and how the processes interleave their execution.
320
321 time sudo ./schedTestFork R 1 5
322 time sudo ./schedTestFork R 1 5
323
324 How do the processes interleave within one execution of schedTestFork?
325
326
327
328 How do the processes interleave between the two schedTestFork
329 processes?

- 7 -

330
331
332
333
334 Do any processes have voluntary context switches?
335
336
337
338
339
340
341
342 time sudo ./schedTestFork R 1 5
343 time sudo ./schedTestFork R 98 5
344
345
346 How do the processes interleave within one execution of schedTestFork?
347
348
349
350 How do the processes interleave between the two schedTestFork
351 processes?
352
353
354
355 time sudo ./schedTestFork R 1 5
356 time sudo ./schedTestFork I 1 5
357
358 How do the processes interleave within one execution of schedTestFork?
359
360
361
362 How do the processes interleave between the two schedTestFork
363 processes?
364
365
366
367 time sudo ./schedTestFork R 1 5
368 time sudo ./schedTestFork F 1 5
369
370
371 How do the processes interleave within one execution of schedTestFork?
372
373
374
375 How do the processes interleave between the two schedTestFork
376 processes?

- 8 -

377
378
379
380 time sudo ./schedTestFork R 1 5
381 time sudo ./schedTestFork B 1 5
382
383 How do the processes interleave within one execution of schedTestFork?
384
385
386
387 How do the processes interleave between the two schedTestFork
388 processes?
389
390

- 9 -

