```
1
       CS 460 Scheduling Lab
 2
 3
       Shutdown VB and change the System to use 2 CPUs.
 4
 5
       Open terminator!
 6
 7
       wget http://zeus.cs.pacificu.edu/chadd/cs460s18/SchedLab.tar.gz
 8
 9
       tar xzf SchedLab.tar.gz
10
11
       cd CS460 SchedulingLab
12
13
       make
14
15
       This produces a number of executables. We will only use some
16
       of these executables today.
17
18
       Split the terminator window horizontally.
19
20
       Split the bottom window vertically.
21
22
23
       CONFIGURE TOP
24
25
       In the top window:
26
27
       taskset -c 0 top -u punetid
28
29
       V
30
       Н
31
       f
32
       <arrow down to P = Last Used CPU>
33
       <space>
34
       <arrow up to %CPU>
35
       S
36
       q
37
       s.3
38
39
40
       RUN THE EXECUTABLES:
41
       In either small window:
42
43
44
       Try out a few of the executables. Note how much work each executable
       reports it has done and how many voluntary and involuntary context
45
46
       switches occur.
47
```

48	./sleeper 20
49 50	Work: VOL CS: IVOL CS:
51 52 53	./CPU 20
54 55	Work: VOL CS: IVOL CS:
56 57	./IO 20
58 59	Work: VOL CS: IVOL CS:
60 61 62	Each of the previous executables takes a command line argument that is the runtime in seconds for the process. In the above examples, each process should run for very close to 20 seconds.
63 64 65 66	Each executable reports the amount of work done and the number of voluntary and involuntary context switches done by that process.
67 68	sleeper just continually calls sleep(1) until the runtime is expired.
69 70 71	CPU runs a for loop and does some calculations until the runtime is expired.
72 73 74	IO runs a for loop and prints data to stderr until the runtime is expired.
75 76 77	Group the two smaller windows.
78 79	Box menu New Group <enter></enter>
80 81 82	Box menu select group
83 84	Alt-G <send a="" all="" group="" in="" input="" to="" windows=""></send>
85 86 87	./CPU 20 # should appear in both small windows
88 89	./CPU 20
90 91	Work: VOL CS: IVOL CS:
92 93 94	./CPU 20
- 2 -	

95	Work:	VOL CS:	IVOL CS:
96			
97		•	_
98	How does the amount of work co	mpare for the two	processes?
99			
100	How does the amount of work co	mpare against a s	single ./CPU 20 process?
101			
102			
103	Let's restrict both processes	to the same CPU:	
104	tackaat a 1 (CDU 20 # chauld	annear in bath	
105	taskset -c 1 ./CPU 20 # should	appear in both s	Small windows
106 107	taskset -c 1 ./CPU 20		
107	Lasksel -C I ./CPU 20		
100	Work:	VOL CS.	TVOL CS:
110	work:		
111			
112	taskset -c 1 ./CPU 20		
113			
114	Work:	VOL CS:	IVOL CS:
115			
116			
117	How does the amount of work co	mpare for the two	processes?
118		1	•
119	How does the amount of work co	mpare against two	CPU processes running
120	without being restricted to a		
121	-		
122			
123	Let's restrict both processes	to different CPUs	5:
124			
125	Alt-0 # Alt-Oh ungroup input		
126			
127	Type in each command below but	don't press ente	er.
128			
129	Alt-G # regroup input		
130	_		
131	Press enter		
132			
133	taskset -c 0 ./CPU 20		
134	blank		
135	Work:	VUL_US:	IVUL CS:
136 137			
137	taskset -c 1 ./CPU 20		
138			
139	Work:	VOL CS.	TVOL CS:
141			
▲┬▲			
- 3 -			

142	
143	How does the amount of work compare for the two processes?
144	
145	How does the amount of work compare against two CPU processes running
146	without being restricted to a CPU?
147	5
148	
149	
150	Let's add a sleeper process to the same CPU:
151	
152	Alt-0 # ungroup input
153	
154	Type in each command below but don't press enter.
155	
156	Alt-G # regroup input
157	
158	Press enter
159	
160	taskset -c 1 ./CPU 20
161	
162	Work: VOL CS: IVOL CS:
163	
164	
165	taskset -c 1 ./sleeper 20
166	
167	Work: VOL CS: IVOL CS:
168	
169	Have door the amount of york compare for the two processes?
170 171	How does the amount of work compare for the two processes?
171	How does the amount of work compare against two CPU processes running
172	without being restricted to a CPU?
173	without being restricted to a cro:
175	
176	
177	Let's add an IO process to the same CPU:
178	
179	Alt-0 # ungroup input
180	
181	Type in each command below but don't press enter.
182	
183	Alt-G # regroup input
184	
185	Press enter
186	
187	taskset -c 1 ./CPU 20
188	
- 4 -	

189	Work:	VOL CS:	IVOL CS:
190			
191			
192	taskset -c 1 ./IO 20		
193			
194	Work:	VOL CS:	IVOL CS:
195			
196			
197	How does the amount of wor	rk compare for the tw	o processes?
198			
199	How does the amount of wor	⁻ k compare against tw	o CPU processes running
200	without being restricted t	o a CPU?	
201			
202			
203			
204			
205	SCHEDULING		
206			
207	Linux has a number of sche	eduling algorithms av	ailable:
208			
209	Real time processes:		
210	SCHED_FIF0		
211	SCHED_RR		
212			
213	Everything else:		
214	SCHED_0THER		
215	SCHED_BATCH		
216	SCHED_IDLE		
217			
218	Read the man page for sche	ed to understand each	algorithm.
219			
220	Step 0:		
221			
222	schedTest launches 5 thr	•	•
223	to core 1 and sets the s		ed on the command line
224	argument given. R is RR	and F is FIFO.	
225			
226	Each thread prints 10 me		e thread ID, a progress
227	number, and a time stamp).	
228			f
229	At the end, schedTest pr		ot voluntary and
230	involuntary context swit	ches that occurred.	
231	Noto, all autout because	inst before	oo torminotoo oo oo tot
232		-	ss terminates so as to not
233	generate any extra conte	exi swiiches via prin	ιι.
234	time cude /cebedTect D		
235	time sudo ./schedTest R		
- 5 -			

236	
237	time sudo ./schedTest F
238	
239	Does it seem like the scheduler is working correctly?
240	
241	Justify your answer.
242	
243	
244	
245	Step 1:
246	
247	Note: RT scheduling priorities run from 1-99. 99 is highest priority
248	
249	Note: all output happens just before a process terminates so as to not
250	generate any extra context switches via printf.
251	
252	schedTestFork launches argv[3] processes (via fork()) and pins
253	those threads to core 1 and sets the scheduling policy based on
254	argv[1]. R is RR and F is FIFO, B is BATCH, I is IDLE, O is OTHER.
255	
256	Each thread prints 10 messages containing the thread ID, a progress
257	number, and a time stamp.
258	
259	argv[2] sets the priority of each process via:
260	(threadid % argv[2]) + 1 # threadid starts at 0 and increments by 1
261	
262	As each process ends, the counts of voluntary and involuntary context
263	switches are listed.
264 265	Dup each of the following command individually
265	Run each of the following command individually.
200 267	Because schedTestFork changes its scheduling algorithm, you must
267	run schedTestFork with root privileges.
269	full schedrestronk with root priviteges.
205	time sudo ./schedTestFork R 1 2
271	
272	time sudo ./schedTestFork R 98 2
273	
274	<pre>time sudo ./schedTestFork F 1 2</pre>
275	
276	time sudo ./schedTestFork F 98 2
277	
278	
279	Does it seem like the scheduler is working correctly?
280	Justify your answer.
281	
282	
- 6 -	

283	Step 1.1:	
284	In a split Terminator window, run the following with grouped input:	
285		
286	time sudo ./schedTestFork R 98 2	
287	time ./CPU 20 work:	
288		
289	time (real):	
290		
291	Just in one terminal alone:	
292	time taskset -c 1 ./CPU 10 work:	
293		
294	time (real):	
295		
296		
297		
298	time sudo ./schedTestFork R 98 10	
299	time taskset -c 1 ./CPU 10 work:	
300		
301	time (real):	
302		
303		
304	time sudo ./schedTestFork R 98 20	
305	<pre>time taskset -c 1 ./CPU 10 work:</pre>	
306		
307	time (real):	
308		
309		
310	What happens to the work for CPU?	
311		
312	What happens for the real time for CPU?	
313		
314		
315	Start in 2 way terminator window to see how processes with different	
316	scheduling algorithms interact.	
317		
318	The important behavior to watch for is what order the processes	
319	complete in and how the processes interleave their execution.	
320		
321	time sudo ./schedTestFork R 1 5	
322	time sudo ./schedTestFork R 1 5	
323		
324	How do the processes interleave within one execution of schedTestFork	</td
325		
326		
327		
328	How do the processes interleave between the two schedTestFork	
329	processes?	
	p	
7 -		

330 331 332 333 334 335 336 337 338 339	Do any processes have voluntary context switches?
340 341 342 343 344	time sudo ./schedTestFork R 1 5 time sudo ./schedTestFork R 98 5
345 346 347 348 349	How do the processes interleave within one execution of schedTestFork?
350 351 352 353	How do the processes interleave between the two schedTestFork processes?
354 355 356	time sudo ./schedTestFork R 1 5 time sudo ./schedTestFork I 1 5
357 358 359 360 361	How do the processes interleave within one execution of schedTestFork?
362 363 364 365	How do the processes interleave between the two schedTestFork processes?
366 367 368 369 370	time sudo ./schedTestFork R 1 5 time sudo ./schedTestFork F 1 5
371 372 373 374	How do the processes interleave within one execution of schedTestFork?
375 376 - 8 -	How do the processes interleave between the two schedTestFork processes?

377 378	
379	
380	<pre>time sudo ./schedTestFork R 1 5</pre>
381	<pre>time sudo ./schedTestFork B 1 5</pre>
382	
383	How do the processes interleave within one execution of schedTestFork?
384	
385	
386	
387	How do the processes interleave between the two schedTestFork
388	processes?
389	
390	