
CS 460 Programming Assignment 3 Your Own Unix Shell

Due March 6, 2018 11:59 pm Milestone 1
Due March 15, 2018 11:59 pm Milestone 2
Due March 22, 2018 1:00 pm (DEMO) Milestone 3 65 points

Goal:
Learn about Unix processes, interprocess communication, fork(), exec(), pipe() dup2(), waitpid().

Description:
You will write a Unix shell, a small command line interface to Unix. The shell will need the ability to
launch applications (spawn other processes), do input and output redirection from/to a file < > , allow
an application's output to be piped to another application's input |, and allow an application to be
launched in the background &. You must implement the semicolon to separate commands.

The only builtin functions you need to create are exit and cd.

Simple examples follow. Note the prompt displays the process ID of the shell.

Sample Output:

[chadd@arch-small CS460_Shell]$./CS460_Shell

21364> ls

CS460_3H.pdf CS460_3.pdf hint.txt

21364> cat hint.txt

you should look at man -s 2 pipe

recursion is fun!

21364> cat hint.txt | grep fun

recursion is fun!

21364> cat hint.txt > newFile.txt

21364> ls newFile.txt

newFile.txt

21364> cat < hint.txt | grep man

you should look at man -s 2 pipe

21364> firefox &

21364> ps | grep firefox

 2515 pts/1 00:00:01 firefox

21364> ls ; echo hi
CS460_3H.pdf CS460_3.pdf hint.txt
hi
21364> exit

[chadd@arch-small CS460_Shell]$

Constraints:

Each command line will be no more than 2047 typed characters. Each symbol (< > |) will be
surrounded on either side by at least one space (cmd1<in|grep is not allowed). The & will be
preceded by at least one space. You do NOT need to support wild cards (ls *.txt). The &, if it is
present, must be the last item in a command line. A semicolon cannot follow an &.

Functions (and such) you will (probably) need:
fork(), exec??(), strtok_r(), strsep(), dup2(), pipe(), waitpid(), STDOUT_FILENO, STDIN_FILENO

Subversion/GitLab/GitHub (or how do I submit my work?):
You must store your source code in a Subversion repository on zeus or in GitLab/GitHub.
Subversion: Add your project to /home/login/SVNREPOS_CS460S18/
Git[Lab|Hub]: New repository CS460S18_Shell

Name your project CS460_Shell_PUNetID. Email the repository/share the git repos with me.

Make Targets
CS460_Shell: build the executable named CS460_Shell
valgrind: start the executable with valgrind
 valgrind -v --leak-check=yes --track-origins=yes --leak-check=full --show-

leak-kinds=all ./CS460_Shell
You should not see any memory leaks or errors, even across fork()s.

debug: start the executable with the -d command line option
valgrind_debug: start the executable with the -d command line option with valgrind
clean clean

Executable Location
You should build the executable (CS460_Shell) at the root of your Project.

Milestones:

(10 pts) 1: March 6: Parsing the command line*, handle exit builtin, implement ;

(10 pts) 2: March 15: Launch an application (with arguments, with backgrounding, no redirection,
no pipes), handle cd builtin, implement ;

(45 pts) 3: March 22: Final Milestone!

* See the example on the last page. For the first milestone, you need to be able to display the
parse of the command line as shown. Only display this parse if the user starts your shell with the -d
command line option. This command line option needs to be present in every version you submit.
When this command line option is present (even in later milestones) you should parse and display the
command only and not launch any applications. Use tabs to nest your output. Your terminal tab size
may vary from this document.

Notes:

Lookup the parameters that exec??() takes to guide you in building a data structure to represent the
parsed command line.

Make sure the use can type either ls or /usr/bin/ls and get the same result.

When in doubt, do whatever /bin/bash does!

This took me about 500 non-comment lines of code.

See the class schedule web page for helpful GDB links!

[chadd@arch-small CS460_Shell]$./CS460_Shell -d

21364> ls
command: ls

arguments: none
redirection:

stdin: none
stdout: none

pipe: none
background: no

21364> cat hint.txt > newFile.txt
command: cat

arguments: hint.txt
redirection:

stdin: none
stdout: newFile.txt

pipe: none
background: no

21364> cat hint.txt newFile.txt | grep fun &
command: cat

arguments: hint.txt newFile.txt
redirection:

stdin: none
stdout: PIPE

pipe: YES
command: grep

arguments: fun
redirection:

stdin: PIPE
stdout: none

pipe: none
background: YES

21364> ls ; echo hi
command: ls

arguments: none
redirection:

stdin: none
stdout: none

pipe: none
background: no
command: echo

arguments: hi
redirection:

stdin: none
stdout: none

pipe: none
background: no

21364> exit

[chadd@arch-small CS460_Shell]$

