
C:\Users\chadd\box\Box Sync\CS460\SchedulingLab.txt
Page 1 of 5 5/5/2016 9:41:21 PM

1 CS 460 Scheduling Lab
2
3
4 Shutdown VB and change the System to use only 1 CPU. Use only
5 1 CPU in VB for this entire exercise. Boot into any working
6 kernel.
7
8
9 Open a terminal

10
11 sudo pacman -Sy terminator
12
13 Open terminator and run top (V)
14
15 Open terminator and do the following:
16
17 wget http://zeus.cs.pacificu.edu/chadd/cs460s16/SchedLab.tar.gz
18
19 tar xzf SchedLab.tar.gz
20
21 cd CS460_SchedulingLab
22
23 make
24
25 This produces a number of executables. We will only use some
26 of these executables today.
27
28 PRIORITIES
29
30
31 Try out a few of the executables. Note how much work each executable
32 reports it has done.
33
34 time ./sleeper 20
35
36 Work: __________________________
37
38 time ./CPU 20
39
40 Work: __________________________
41
42 time ./IO 20
43
44 Work: __________________________
45
46 Each of the previous executables takes a command line argument that
47 is the runtime in seconds for the process. In the above examples,
48 each process should run for very close to 20 seconds.
49
50 Each executable reports the amount of work done and the number
51 of voluntary and involuntary context switches done by that process.
52
53 sleeper just continually calls sleep(1) until the runtime is expired.
54
55 CPU runs a for loop and does some calculations until the runtime
56 is expired.
57
58 IO runs a for loop and prints data to stderr until the runtime is
59 expired.
60
61
62 Open a terminator window. Stretch to fill the screen width.

- 1 -

C:\Users\chadd\box\Box Sync\CS460\SchedulingLab.txt
Page 2 of 5 5/5/2016 9:41:21 PM

63 Right click, Split vertical
64 On the right half, Right click, Split vertical
65 On the left half, Right click, Split vertical
66
67 Now you have 4 terminals in one window.
68
69 In each of the four terminals, type one of the following commands
70 but don't press enter.
71
72 time ./sleeper 20
73
74
75 time ./CPU 20
76
77
78 time ./CPU 20
79
80
81 time ./IO 20
82
83
84
85 Click the little tiny red/blue/white squares in the top left of any
86 of the 4 terminal windows.
87
88 Select Broadcast all.
89
90 Press Enter. This will send the enter command to each terminal
91 and run each command at nearly the same time.
92
93 Note how much work each executable has done. How does this compare
94 to the original work completed when only one executable is running?
95 Why?
96
97
98
99 Without typing Enter, in any one of the terminals, type

100 time ./CPU 30
101
102 This should appear in all four terminals.
103
104 Open another terminator window (you should have two single windows and
105 one four way window open).
106
107 Press enter in the 4 way window.
108
109 In the window running top, look at how much (%) of the CPU each
110 CPU process is getting.
111
112
113 Nice is a command to raise or lower the priority of a process. Only
114 root can raise the priority. You can always lower your priority.
115
116 Let's rerun the CPU process in the 4 way window and nice down a process
117 to give that process a lower priority.
118
119 Start time ./CPU 30 in all four terminals.
120
121 Find the PID of any CPU process in top.
122
123 In another terminator window:
124 sudo renice -n 10 -p PID

- 2 -

C:\Users\chadd\box\Box Sync\CS460\SchedulingLab.txt
Page 3 of 5 5/5/2016 9:41:21 PM

125
126 Watch top. Does that PID's share of the CPU drop? Do you see the PR
127 or NI change in top?
128
129 Drat!
130
131 We have to turn off autogroup for nice to work properly.
132
133 cat /proc/sys/kernel/sched_autogroup_enabled
134 su # become root
135 echo 0 > /proc/sys/kernel/sched_autogroup_enabled # does not stick past reboot!
136 exit # leave root
137
138 Now, restart all 4 CPU processes, find one in top and
139 sudo renice -n 10 -p PID
140
141 Watch top. Does that PID's share of the CPU drop? Do you see the PR
142 or NI change in top?
143
144 Description of autogroups.
145 https://oakbytes.wordpress.com/2012/06/06/linux-scheduler-cfs-and-nice/
146 http://serverfault.com/questions/405092/nice-level-not-working-on-linux
147 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler#Fairer_algorithms
148 http://forum.osdev.org/viewtopic.php?f=15&t=25612
149
150 You can also nice your own process at launch.
151
152 Click the little tiny red/blue/white squares in the top left of any
153 of the 4 terminal windows.
154
155 Select Broadcast off.
156
157 Type, but don't hit enter, these commands into
158
159 time sudo nice -n 0 ./CPU 40
160 time sudo nice -n -20 ./CPU 40
161 time sudo nice -n 10 ./CPU 40
162 time sudo nice -n 19 ./CPU 40
163
164 Click the little tiny red/blue/white squares in the top left of any
165 of the 4 terminal windows.
166
167 Select Broadcast on.
168
169 In the window running top:
170 O
171 COMMAND=CPU
172
173 How much work did each process get done?
174
175 Arrow up in the 4 way window to run these again.
176
177
178
179 SCHEDULING
180
181 Now, let's play with scheduling algorithms.
182
183 Linux has a number of scheduling algorithms available:
184
185 Real time processes:
186 SCHED_FIFO

- 3 -

C:\Users\chadd\box\Box Sync\CS460\SchedulingLab.txt
Page 4 of 5 5/5/2016 9:41:21 PM

187 SCHED_RR
188
189 Everything else:
190 SCHED_OTHER
191 SCHED_BATCH
192 SCHED_IDLE
193
194 Read the man page for sched to understand each algorithm.
195
196 Step 0:
197
198 schedTest launches 5 threads (via pthreads) and sets the scheduling
199 policy based on the command line argument given. R is RR and F is FIFO.
200 Each thread prints 10 messages containing the thread ID, a progress
201 number, and a time stamp.
202
203 At the end, schedTest prints out the number of voluntary and involuntary
204 context switches that occurred.
205
206 Note: all output happens just before a process terminates so as to not
207 generate any extra context switches via printf.
208
209 time sudo ./schedTest R
210
211 time sudo ./schedTest F
212
213 Does it seem like the scheduler is working correctly? Justify your answer.
214
215 # Bonus: do the following if you have time after completing Step 1.
216 # Restart with 2 CPUs and run the above tests again. Any difference?
217 # Restart with 1 CPU and continue.
218
219 Step 1:
220
221 Note: RT scheduling priorities run from 1-99. 99 is highest priority
222
223 Note: all output happens just before a process terminates so as to not
224 generate any extra context switches via printf.
225
226 schedTestFork launches argv[3] processes (via fork()) and sets the scheduling
227 policy based on argv[1]. R is RR and F is FIFO, B is BATCH, I is IDLE, O is

OTHER.
228
229 Each thread prints 10 messages containing the thread ID, a progress
230 number, and a time stamp.
231
232 argv[2] sets the priority of each process via:
233 (threadid % argv[2]) + 1 # threadid starts at 0 and increments by 1
234
235 As each process ends, the counts of voluntary and involuntary context
236 switches are listed.
237
238 Run each of the following command individually.
239
240 Because schedTestFork changes its scheduling algorithm, you must
241 run schedTestFork with root privileges.
242
243 time sudo ./schedTestFork R 1 2
244
245 time sudo ./schedTestFork R 98 2
246
247 time sudo ./schedTestFork F 1 2

- 4 -

C:\Users\chadd\box\Box Sync\CS460\SchedulingLab.txt
Page 5 of 5 5/5/2016 9:41:21 PM

248
249 time sudo ./schedTestFork F 98 2
250
251
252 Does it seem like the scheduler is working correctly? Justify your answer.
253
254
255 What happens to other processes in VB while these run? Geany? Firefox, etc?
256
257 Start in 4 way terminator window to see how processes with different
258 scheduling algorithms interact.
259
260 (approx 5 min).
261 time sudo ./schedTestFork R 1 2
262 time sudo ./schedTestFork R 1 2
263 time sudo ./schedTestFork R 1 2
264 time sudo ./schedTestFork R 1 2
265
266 time sudo ./schedTestFork R 1 2
267 time sudo ./schedTestFork R 98 2
268 time sudo ./schedTestFork R 1 2
269 time sudo ./schedTestFork O 1 2
270
271 time sudo ./schedTestFork R 1 2
272 time sudo ./schedTestFork R 98 2
273 time sudo ./schedTestFork R 1 2
274 time sudo ./schedTestFork I 1 2
275
276 time sudo ./schedTestFork R 1 2
277 time sudo ./schedTestFork R 98 2
278 time sudo ./schedTestFork F 98 2
279 time sudo ./schedTestFork I 1 2
280
281 time sudo ./schedTestFork R 1 2
282 time sudo ./schedTestFork R 98 2
283 time sudo ./schedTestFork F 98 2
284 time sudo ./schedTestFork B 1 2
285
286 Does the output match your expectation?
287
288

- 5 -

