
04/01/16
CS460

Pacific University 1

Chapter 6
Synchronization

Images from Silberschatz

04/01/16
CS460

Pacific University 2

My code is slow
● Don't worry about speed at this point

● Later solutions:

– use the optimizer with gcc: -O#

– # is 0,1,2,3

● 0 do not optimize

– You will not be able to debug optimized code!

● gprof

– profiling tool that measures how long you spend in each function

– gcc -o exec exec.o -pg

– ./exec

– gprof ./exec

04/01/16
CS460

Pacific University 3

Race Condition
● How can count++ be executed?

● How can count-- be execute?

● Why is this a problem?

– Why else is it a problem?

● Atomic

04/01/16
CS460

Pacific University 4

Critical Section Problem
● Critical Section

● Mutual Exclusion

● Progress

● Bounded Waiting

● Preemptive vs non-preemptive kernels

04/01/16
CS460

Pacific University 5

Two-lock Queue

http://www.research.ibm.com/people/m/michael/podc-1996.pdf, Figure 2

04/01/16
CS460

Pacific University 6

Two-lock Queue

http://www.research.ibm.com/people/m/michael/podc-1996.pdf, Figure 2

04/01/16
CS460

Pacific University 7

● These are two separate
threads.

● What are we trying to do?

● What is the problem?

while (true)
{

/* produce an item and put in nextProduced */

while(count == BUFFER_SIZE)
; // do nothing

buffer[in] = nextProduced;
in = (in +1) % BUFFER_SIZE;
count++;

}

while (true)
{

/* consume an item */
while(count == 0)

; // do nothing

nextConsumed = buffer[out];
out = (out +1) % BUFFER_SIZE;
count--;

/* use nextConsumed */
}

Just a reminder.....

04/01/16
CS460

Pacific University 8

Peterson's Solution
● Assumptions:

● Are the 3 properties preserved?

04/01/16
CS460

Pacific University 9

Hardware support
● Implement this on the processor

– Machine instructions

04/01/16
CS460

Pacific University 10

More hardware solutions
– xchng on Intel chips
– TestAndSet is really xchng & test

04/01/16
CS460

Pacific University 11

CompareAndSwap

– cmpxchg on Intel Itanium and Intel x86_64
● sets ZF-bit in EFLAGS to show if the swap occured

– pthreads eventually calls this instruction
for pthread_mutex_lock()

– glibc
● deep in the nptl directory
● sysdeps/x86_64/bits/atomic.h
● assembly in the .h file

int compareAndSwap(int *value, int compareTo, int setTo)
{

int origValue = *value;
if(*value == compareTo)
{

*value = setTo;
}
return origValue; // could return boolean indicating if swapped

}

04/01/16
CS460

Pacific University 12

do{
waiting[i] = TRUE;
key = TRUE;
while(waiting[i] && key)
{

key = TestAndSet(&lock);

}
waiting[i] = FALSE;

// critical section
j = (i + 1) % n;
while((j != i) && !waiting[j])
{

j = (j + 1) %n;
}

if(j == i)
{

lock = FALSE;
}
else
{

waiting[j] = FALSE;
}
// non-critical section

}while(TRUE);

// initialize to FALSE
boolean waiting[n];
boolean lock;

04/01/16
CS460

Pacific University 13

Semaphore
● Counting

● Binary

– ??

● Spin lock

● Problems?

– solutions?

● What can we say about Critical
Sections?

04/01/16
CS460

Pacific University 14

Linux
● man sem_overview

● sem_init() // initialize, set initial value (may be 0, 1, >1)

● sem_wait() // decrement // block if semaphore is 0

● sem_post() // increment

● sem_open(char*) // open a named semaphore
 // like opening a file.

● sem_close()

● sem_unlink() // delete from system

unnamed semaphores
are often shared across
processes via shared
memory

04/01/16
CS460

Pacific University 15

Example

04/01/16
CS460

Pacific University 16

Dangers
● Deadlock

● Starvation

● Priority Inversion

04/01/16
CS460

Pacific University 17

Classic Problems of Synchronization
● Used to test new synchronization methods

● Bounded Buffer

● Readers-Writers

● Dining Philosophers
– or, why you should never eat at a table full of computer scientists

04/01/16
CS460

Pacific University 18

Dining Philosophers

04/01/16
CS460

Pacific University 19

Dining Philosophers Solution
● Using semaphores

● Problems?

● Solutions?

04/01/16
CS460

Pacific University 20

Problems with Semaphores
● What can you think of?

● Why are these problems bad?

– Really, really, really bad?

● Evil even.

04/01/16
CS460

Pacific University 21

Monitors
● High level coding practice

– design pattern

– Sometimes part of the language

● Java: synchronized
● C#: Monitor class
● C++ .NET: Monitor class

– Sometimes you code it yourself

● C

● Only one process can be in a
monitor at a time

● Why is this useful?

04/01/16
CS460

Pacific University 22

Log-Based Recovery
● Ensure atomicity

– In case of a crash

– Databases

– Long running computations

● Weather simulations
● Nuclear reaction simulations

● Write-ahead logging

– Start

– Commit

– Undo

– Redo

● Problems?

04/01/16
CS460

Pacific University 23

Checkpoints

04/01/16
CS460

Pacific University 24

Transactional Memory
http://research.cs.wisc.edu/trans-memory/

http://arstechnica.com/hardware/news/2011/08/ibms-new-transactional-
memory-make-or-break-time-for-multithreaded-revolution.ars

