
CS 460 Programming Assignment One Linux Tools, System Calls

Due Feb 8, 2016, 11:59pm Email me your SVN repository name
Due Feb 12, 2016, 4:45pm Final Project (in class demo!) 50 points

Goal:
Refresh your skills on: Eclipse, Subversion, the Linux command line, C, Makefiles, argv/argc, and learn
about Linux System Calls and some Linux command line tools.

Description:
You will write a program that will make a number of system calls to determine information about the
system your program is running on. You'll need to display this information to the screen as specified
below. Further, and most important, you will need to run your program using strace and ltrace to
investigate how Linux is executing your program. You will need to submit answers to the questions at
the end of this handout. The answers must be written in full English sentences in a text file named
Answers.txt in the root of your Eclipse project.

Your Program:

The system calls you will need to invoke are:
nanosleep()
access()
sysinfo()
uname()

You will also need to use errno/perror() to find and display error messages produced by the system
calls. You will need to determine which header files supply each of the above functions.

Your program must do the following:
1. Pause for 1.5 seconds using nanosleep
2. Call uname and display all of the returned information to the screen using printf.
3. Call access using F_OK to determine if you have access to the file passed as a command line

argument (argc/argv). Use perror() to print an error if you don't have access.
4. Call access to determine if you have read access to the file passed as a command line

argument. Use perror() to print an error if you don't have access.
5. Call access to determine if you have write access to the file passed as a command line

argument. Use perror() to print an error if you don't have access.
6. Call access to determine if you have both read and write access to the file passed as a

command line argument. Use perror() to print an error if you don't have access.
7. Call sysinfo with NULL as the argument and handle the error using perror.
8. Call sysinfo and display all of the returned information to the screen (separated by \n). You

must turn the load information into a float. The load numbers should be very close (with
rounding) to what is displayed by top.

9. You must check to make sure exactly one file name is passed as a command line argument. If
this is not the case you need to print a usage message and terminate.

10.You must write at least one function (referred to as foo, but don't name it that) other than main().
Error handling: For nanosleep, check for errors and then decode the error using errno.
For all other system calls, check for errors and then use perror() to display an error message.
NOTE: Using perror writes to stderr so your error output may not be in the order you expect or
the order on this handout!

You can learn more about these
system calls by typing
man systemcall (without the ())
at the Linux command line or
Googling 'man systemcall'

Sample Output:

 Usage Output:

coffee$./CS460_SysCalls /etc/passwd

nanosleep ------------------------------------

UNAME ------------------------------------

Linux | coffee | 3.11.10-29-default | #1 SMP Thu Mar 5 16:24:00 UTC 2015 (338c513) |
x86_64 | (none)

access File ------------------------------------

access Read ------------------------------------

access Write ------------------------------------

/etc/passwd with W_OK: Permission denied

access Read and Write ------------------------------------

/etc/passwd with R_OK | W_OK: Permission denied

sysinfo NULL ------------------------------------

sysinfo(NULL): Bad address

sysinfo ------------------------------------

uptime: 520768
Loads: 0.361816 0.480957 0.495117
Total Ram: 16804556800
Free Ram: 1811079168
Shared Ram: 0
Buffer Ram: 818171904
Total Swap: 8585736192
Free Swap: 8585736192
Processes: 763
Total High Memory: 0
Free High Memory: 0
Memory Unit Size: 1

coffee$./CS460_SystemCalls

USAGE: ./CS460_SysCalls filename

NOTE: Your numbers/data will vary!

Subversion (or how do I submit my work?):

You must store your source code in a Subversion repository on zeus. You need to create on as
follows:

zeus$ svnadmin create /home/login/SVNREPOS_CS460S16/

You can connect to this through Eclipse using the address:
svn+ssh://login@zeus.cs.pacificu.edu/home/login/SVNREPOS_CS460S16/

Name your project CS460_SysCalls_PUNetID. I will check out your code using the following
command:

zeus$ svn co -r {2016-02-12T16:50} svn+ssh://zeus.cs.pacificu.edu/home/PUNetID/SVNREPOS_CS460S16/
CS460_SysCalls_PUNetID

This will pull out the last revision made previous to 4:50pm on Feb12, 2016.

Makefile

You will need to build a Makefile for this Eclipse project. You need the following make targets:

CS460_SysCalls: build the executable file CS460_SysCalls (using -g)
runTest: run './CS460_SysCalls /etc/passwd'
runNoFile: run './CS460_SysCalls'
runStrace: run 'strace ./CS460_SysCalls /etc/passwd > strace.out 2>&1'
runLtrace: run 'ltrace ./CS460_SysCalls /etc/passwd'
runTime: run 'time ./CS460_SysCalls /etc/passwd'
clean: remove any executable and object files

I will compile your code (on Zeus) using the command:

zeus$ gmake clean ; gmake

I will test your code using the command (among others):

zeus$ gmake runTest

Eclipse

Build a C Project | Makefile Project | Empty Project | Linux GCC
toolchain.

Your Eclipse project must look very similar to the project shown
here. Note the executable file and Answers.txt are at the root of
the project. You may add an include directory. You must adhere
to proper Computer Science department coding standards!

Useful resources

http://linux.die.net/man snprintf fflush(stdout)

Questions:

Answer the following questions in the file Answers.txt in your Eclipse Project. Use proper English,
complete sentences, and sensible formatting. Put your name at the top of the file.

1. How many hours did you spend coding this project?

2. Which part of this project caused you the most difficulty?

3. What did you need to do to convert the load averages from sysinfo into a float? How did you
determine how to do this?

4. Given the output of runTime, does nanosleep seem accurate?

5. Study the output of ltrace ./CS460_SysCalls /etc/passwd.
1. Does the call to main show up? If so where, if not, why not?
2. Does the call to the foo show up? If so where, if not, why not?
3. What does access("/etc/passwd", 2) = -1 mean? Where does the 2 come from? What

does the -1 mean?
4. Do you see calls to puts? Did you call puts? Why do you think puts is there?

6. Study the output of strace ./CS460_SysCalls /etc/passwd > strace.out 2>&1.
1. To do this, open the file strace.out in Eclipse. You may need to refresh the project for the file

to show up in the Project Explorer (press F5).
2. Why is Linux trying to open libc.so? What directories are looked at first? Why are the

directories in that order? Where is libc.so eventually found?
3. What is happening between the open and close of libc.so? Can you determine what each

function call is doing? I do not expect you to decode every function call here. But give
it your best effort. readelf -a helps! I do expect you to be able to identify the open and
close of each file.

4. What are execve() and brk(0) doing?
5. Where does write(2, "/etc......” come from? Where does the 2 come from?
6. Where does write(1, “access.....” come from? Where does the 1 come from? How many

times does write(1 appear? Does this make sense?

7. Use Eclipse to navigate <time.h> to determine how time_t is implemented. List every file, line
number pair you go through to get to the ultimate definition.
Hint: you should end up at a #define using primitive types (int, long, float, double, char, void)
Hint: by putting your cursor on a header file name, datatype, or function and pressing F3 inside
Eclipse you will be taken to that item's definition.
Hint: Declare a variable of type time_t and use F3 to start looking for its definition. Your first
step should take you to time.h. Investigate how __time_t is defined. Recurse until you hit a line
containing only primitive types.

8. The answers to these questions are the most important part of this assignment!

☺ Bring a printout of strace.out and your answers to class on Friday 12, 2016.

This took me less than 200 non-comment lines of code. The most time consuming part of this
assignment is the Questions section and the research you will need to do. I expect questions to come
up during class before the assignment is due.

