
04/05/10
CS460

Pacific University 1

Chapter 6
Synchronization

Images from Silberschatz

04/05/10
CS460

Pacific University 2

Processes
● Multiple processes accessing the same data

– Could be threads

● Producer/Consumer

– Section 3.4.1

04/05/10
CS460

Pacific University 3

● These are two
separate threads.

● What's the problem?

while (true)
{

/* produce an item and put in nextProduced */

while(count == BUFFER_SIZE)
; // do nothing

buffer[in] = nextProduced;
in = (in +1) % BUFFER_SIZE;
count++;

} while (true)
{

while(count == 0)
; // do nothing

nextConsumed = buffer[out];
out = (out +1) % BUFFER_SIZE;
count--;

/* use nextConsumed */
}

04/05/10
CS460

Pacific University 4

Race Condition
● How can count++ be executed?

● How can count-- be execute?

● Why is this a problem?

– Why else is it a problem?

● Atomic

04/05/10
CS460

Pacific University 5

Critical Section Problem
● Critical Section

● Mutual Exclusion

● Progress

● Bounded Waiting

● Preemptive vs non-preemptive kernels

04/05/10
CS460

Pacific University 6

Peterson's Solution
● Assumptions:

● Are the 3 properties preserved?

● How might we implement this?

– Think about system calls....

04/05/10
CS460

Pacific University 7

Hardware support
● Implement this on the processor

– Machine instructions

04/05/10
CS460

Pacific University 8

More hardware solutions

– xchng on Intel chips

– TestAndSet is really xchng & test

04/05/10
CS460

Pacific University 9

CompareAndSwap

– cmpxchg on Intel Itanium and Intel IA-32

– pthreads eventually calls this instruction
for pthread_mutex_lock()

– http://ftp.gnu.org/gnu/glibc/glibc-2.9.tar.gz

– deep in the nptl directory

● lowlevellock.h

04/05/10
CS460

Pacific University 10

do
{

waiting[i] = TRUE;
key = TRUE;
while(waiting[i] && key)
{

key = TestAndSet(&lock);
}
waiting[i] = FALSE;

// critical section
j = (i + 1) % n;
while((j != i) && !waiting[j])
{

j = (j + 1) %n;
}

if(j == i)
{

lock = FALSE;
}
else
{

waiting[j] = FALSE;
}
// non-critical section

}while(TRUE);

// initialize to FALSE
boolean waiting[n];
boolean lock;

04/05/10
CS460

Pacific University 11

Semaphore
● Counting

● Binary

– ??

● Spin lock

● Problems?

– solutions?

● What can we say about Critical
Sections?

04/05/10
CS460

Pacific University 12

Deadlock & Starvation

04/05/10
CS460

Pacific University 13

Classic Problems of Synchronization
● Used to test new synchronization methods

● Bounded Buffer

● Readers-Writers

● Dining Philosophers
– or, why you should never eat at a table full of computer scientists

04/05/10
CS460

Pacific University 14

Dining Philosophers

04/05/10
CS460

Pacific University 15

Dining Philosophers Solution
● Using semaphores

● Problems?

● Solutions?

04/05/10
CS460

Pacific University 16

Problems with Semaphores
● What can you think of?

● Why are these problems bad?

– Really, really, really bad?

● Evil even.

04/05/10
CS460

Pacific University 17

Monitors
● High level coding practice

– design pattern

– Sometimes part of the language

● Java: synchronized
● C#: Monitor class
● C++ .NET: Monitor class

– Sometimes you code it yourself

● C

● Only one process can be in a
monitor at a time

● Why is this useful?

04/05/10
CS460

Pacific University 18

Log-Based Recovery
● Ensure atomicity

– In case of a crash

– Databases

– Long running computations

● Weather simulations
● Nuclear reaction simulations

● Write-ahead logging

– Start

– Commit

– Undo

– Redo

● Problems?

04/05/10
CS460

Pacific University 19

Checkpoints

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

