
04/26/10
CS460

Pacific University 1

Chapter 5
Scheduling

Images from Silberschatz



04/26/10
CS460

Pacific University 2

CPU usage/IO bursts
● Life time of a single process

● What would an IO bound process look 
like?

● What would a CPU bound process look 
like?



04/26/10
CS460

Pacific University 3

● Single process

● What would an IO bound process look like?

● What would a CPU bound process look like?



04/26/10
CS460

Pacific University 4

CPU Scheduler
● Short term scheduler

● Takes process from ready queue and runs it

– Various algorithms used here.....

– Data structure? Why?

– puts it on the CPU

● Takes a process off the CPU and puts it on the ready queue

– Why?

● Swapping processes around causes a ......



04/26/10
CS460

Pacific University 5

Scheduling events
● Processes moved from the CPU when:

– Switches from running to waiting state

– Switches from running to ready state

– Switches from waiting to ready

– Terminates

– What if only first and last are implemented?

● Why would we ever do this?



04/26/10
CS460

Pacific University 6

Problems
● What happens if a process is preempted while in a system call?

– Possible bad outcomes?

– How to fix this?



04/26/10
CS460

Pacific University 7

Dispatcher
● Module/code that puts the process on the CPU

– Switch context

– Switch to user mode

– Restart at correct program counter (PC)

● Dispatch Latency:



04/26/10
CS460

Pacific University 8

Goals
● CPU Utilization

● Throughput

● Turnaround time

● Waiting time

● Response time

● Usually optimize average

– Sometimes optimize the minimum or maximum

– Sometimes minimize the variance

– Why? Which values?



04/26/10
CS460

Pacific University 9

Scheduling Algorithms
● First-Come, First-Served (FCFS)

– Non-preemptive (cooperative!)

– Data structure?

P 1 P 2 P 3

2 4 2 7 3 00

P 1 P 2 P 3

2 4 2 7 3 00



04/26/10
CS460

Pacific University 10

FCFS, cont

● Advantages?

P 1P 3P 2

63 3 00

P 1P 3P 2

63 3 00



04/26/10
CS460

Pacific University 11

Shortest Job First (SJR)
● Choose process who's next CPU burst is the shortest

– Not really shortest JOB first

● May be preemptive (or not)

– Preemptive (Shortest-Remaining-Time-First (SRTF))

● Gives minimum average waiting time

– Provably optimal

– Preemptive

– With perfect knowledge



04/26/10
CS460

Pacific University 12

Example (cooperative!)

P 1 P 3 P 2

73 1 60

P 4

8 1 2

P 1 P 3 P 2

73 1 60

P 4

8 1 2



04/26/10
CS460

Pacific University 13

Preemptive

P 1 P 3P 2

42 1 10

P 4

5 7

P 2 P 1

1 6

P 1 P 3P 2

42 1 10

P 4

5 7

P 2 P 1

1 6



04/26/10
CS460

Pacific University 14

Why is this hard?
● Length of next CPU burst is?

● Why? What does this mean? What does this look like?

+



04/26/10
CS460

Pacific University 15

Prediction of next CPU Burst



04/26/10
CS460

Pacific University 16

Priority Scheduling
● Give each process a priority (an integer)

● Schedule process with highest priority

– May be the lowest integer (to make things more confusing)

● Preemptive or not

● SJF is a special case of this

– What is the priority?

● Where might a problem arise?



04/26/10
CS460

Pacific University 17

Round Robin
● Each process gets some amount of time (10-100 milliseconds)

– Time quantum/slice

– Put at the end of the queue when done

P 1 P 2 P 3 P 4 P 1 P 3 P 4 P 1 P 3 P 3

0 2 0 3 7 5 7 7 7 9 7 1 1 7 1 2 1 1 3 4 1 5 4 1 6 2

P 1 P 2 P 3 P 4 P 1 P 3 P 4 P 1 P 3 P 3P 1 P 2 P 3 P 4 P 1 P 3 P 4 P 1 P 3 P 3

0 2 0 3 7 5 7 7 7 9 7 1 1 7 1 2 1 1 3 4 1 5 4 1 6 2



04/26/10
CS460

Pacific University 18

Time quanta & context switches



04/26/10
CS460

Pacific University 19

Turnaround time



04/26/10
CS460

Pacific University 20

Multilevel Queue Scheduling
● Different Queues, different algorithms

– Process stays in one queue forever

● Foreground

● Background

● Other categories



04/26/10
CS460

Pacific University 21

● Absolute vs Time slicing



04/26/10
CS460

Pacific University 22

Multilevel Feedback-Queue Scheduling
● Processes move between queues

– Use CPU burst information to move processes

– Aging may play a role

● Defining characteristics

– number of queues

– scheduling algorithms for each queue

– method used to determine when to upgrade a process

– method used to determine when to demote a process

– method used to determine which queue a process will enter when that 
process needs service



04/26/10
CS460

Pacific University 23

Example (p168)
● Three queues

– Q0 RR with time quantum 8 milliseconds

– Q1 RR with time quantum 16 milliseconds

– Q2 FCFS



04/26/10
CS460

Pacific University 24

Multiple-Processor Scheduling
● Asymmetric Multiprocessor

● Symmetric Multiprocessor

● Processor Affinity

– Soft vs hard



04/26/10
CS460

Pacific University 25

Cont.
● Load Balancing

– Push migration

– Pull migration

● Hyperthreading



04/26/10
CS460

Pacific University 26

Thread Scheduling
● Process-contention-scope

● System-contention-scope



04/26/10
CS460

Pacific University 27

Pthreads#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5

int main(int argc, char *argv[])
{

 int i;
pthread t tid[NUM THREADS];
pthread attr t attr;
/* get the default attributes */
pthread attr init(&attr);
/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
/* set the scheduling policy - FIFO, RR, or OTHER */
pthread attr setschedpolicy(&attr, SCHED OTHER);
/* create the threads */
for (i = 0; i < NUM THREADS; i++)

pthread create(&tid[i],&attr,runner,NULL);
/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)

pthread join(tid[i], NULL);
}

 /* Each thread will begin control in this function */
void *runner(void *param)
{ 

printf("I am a thread\n");
pthread exit(0);

}

Note the coding
standards violations!



04/26/10
CS460

Pacific University 28

Solaris Scheduling
● Priority based

● Classes

– Real time

– System

– Time Sharing

– Interactive

● Solaris 9 adds

– Fixed priority

– Fair share



04/26/10
CS460

Pacific University 29



04/26/10
CS460

Pacific University 30

Linux
● Preemptive, priority based

● Two priority ranges (lower is better):

– Real-time: 0-99

– Nice: 100-140



04/26/10
CS460

Pacific University 31

Algorithm Evaluation
● How to choose a scheduling algorithm?

– Define goals

● Minimize wait time? Minimize response time? Maximize CPU utilization?

● Deterministic modeling

● Queuing modeling (queuing network analysis)

– Little's formula

● Simulations

● Build it


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

