CS 460
Operating Systems

TTH 9:40-10:55am

Chadd Williams

Office Hours
M 2:00-3:30
Tues 11-noon
Wed 2:00-3:30
Overview

• Practical introduction to Operating Systems

• Topics
 – Purpose
 – History
 – Design Issues/Structure
 – Devices
 – System (Kernel) vs User mode
 – Concurrency/Deadlock
 – Processes/Threads
 – Multi-Core CPUs
 – Memory Management
 – Security
Syllabus

• *Operating System Concepts* (7th), Silberschatz, et al.

• Grades:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm 1</td>
<td>15%</td>
<td>March 11</td>
</tr>
<tr>
<td>Midterm 2</td>
<td>15%</td>
<td>April 20</td>
</tr>
<tr>
<td>Final</td>
<td>25%</td>
<td>May 14</td>
</tr>
<tr>
<td>Homework/Quizzes</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Programming Projects</td>
<td>40%</td>
<td></td>
</tr>
</tbody>
</table>

• Quizzes: frequent, unannounced, open–note quizzes will be given

• Late Policy: No late assignments accepted

• Grade Complaints: one paragraph summary of why the grade is wrong, within one week of receiving the graded material

• All projects are *individual* projects

• http://zeus.cs.pacificu.edu/chadd/cs460s10

• Don't forget about the CS Message boards
Introduction to Operating Systems

• Read Chapter 1!
 – Definition of an Operating System:

 – Kernel:

 – What is not part of the OS?

 – Linux vs GNU/Linux?

• Computers that need an OS:
 – How are their needs different?
Goals of the OS

• Perspectives:
 – User View:
 • Who is the user?
 – System View:
 • Who is the system?
The Computer

- What does a computer really look like?

- Startup Sequence
We booted!

- Now what?
- Interrupts:
 - Characteristics:
 - Hardware:
 - Software:
 - Trap
 - Interrupt vector:
Memory System

• Random Access Memory

• Registers
 – Instruction register
 – data registers
 – load
 – store

• Caches
Disk Storage

- Magnetic Tape

- Magnetic Disks
 - RAM spills over to disk
 - Virtual memory

- USB drives
 - Flash memory
Devices

• Device controller
 – specialized chip
 – buffer

• Device driver
System Architecture

- Single Processor System

- Multiprocessor System
 - Increased throughput
 - Speed up approaches N for N processors (Ahmdal's Law)
 - Economy of scale
 - Increased reliability
 - Asymmetric MP
 - SMP

- Multi core System
 - dual-core
 - quad-core
System Architecture, cont.

• Blades

• Clusters
 – One OS many computers
 – Beowulf cluster – http://www.beowulf.org/
OS Pieces

• Multiprogramming
 – Job
 – Switching

• Time sharing/multitasking
 – Response time
 – Pre-emptive MT

• Process

• Scheduling
 – Job
 – CPU
OS Pieces, cont.

- Virtual Memory
- Physical Memory
- Security
Operation

- Dual Mode
 - Kernel mode
 - \{ Supervisor | System | Privileged \} mode
 - Hardware bit
 - Privileged instructions
 - Based on CPU type
 - I/O control
 - Interrupt management
 - Stop/Halt
 - Memory management
 - User mode
 - System calls

No mode bit on the original Intel 8088 chip

Hence, MS-DOS originally not dual mode!
Dual-Mode, in action

user process

user process executing → calls system call → return from system call

kernel

trap mode bit = 0

execute system call

return mode bit = 1

user mode (mode bit = 1)

kernel mode (mode bit = 0)
Process Management

• Process
 – Active program
 – Resources
Memory Management
Read Chapter 2