CS 460
Operating Systems

TTH 1:00 – 2:15

Chadd Williams

Office Hours
Tue 2:30-3:30
Wed 1:30-3:30
Fri 10-11
Overview

• Practical introduction to Operating Systems

• Topics
 - Purpose
 - History
 - Design Issues/Structure
 - Devices
 - System (Kernel) vs User mode
 - Concurrency/Deadlock
 - Processes/Threads
 - Multi-Core CPUs
 - Memory Management
 - Security
Syllabus

● *Operating System Concepts (7th)*, Silberschatz, et al.

● Grades:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm 1</td>
<td>15%</td>
</tr>
<tr>
<td>Midterm 2</td>
<td>15%</td>
</tr>
<tr>
<td>Final</td>
<td>20%</td>
</tr>
<tr>
<td>Homework/Quizzes</td>
<td>10%</td>
</tr>
<tr>
<td>Programming Projects</td>
<td>40%</td>
</tr>
</tbody>
</table>

● Quizzes: frequent, unannounced, open-note quizzes will be given

● Late Policy: No late assignments accepted

● Grade Complaints: one paragraph summary of why the grade is wrong, within one week of receiving the graded material

● All projects are *individual* projects

● http://zeus.cs.pacificu.edu/chadd/cs460s08

● Don't forget about the CS Message boards
Introduction to Operating Systems

• Read Chapter 1!
 – Definition of an Operating System:

 – Kernel:

 – What is not part of the OS?

• Computers that need an OS:
 – How are their needs different?
Goals of the OS

• Perspectives:
 – User View:
 • Who is the user?

 – System View:
 • Who is the system?
The Computer

• What does a computer really look like?

• Startup Sequence
We booted!

- Now what?
- Interrupts:
 - Characteristics:
 - Hardware:
 - Software:
 - Trap
 - Interrupt vector:
Memory System

• Random Access Memory

• Registers
 – Instruction register
 – data registers
 – load
 – store

• Caches
Disk Storage

- Magnetic Tape

- Magnetic Disks
 - RAM spills over to disk
 - Virtual memory

- USB drives
 - Flash memory
Devices

- Device controller
 - specialized chip
 - buffer

- Device driver
System Architecture

- Single Processor System

- Multiprocessor System
 - Increased throughput
 - Speed up approaches N for N processors (Ahmdal's Law)
 - Economy of scale
 - Increased reliability
 - Asymmetric MP
 - SMP

- Multi core System
 - dual-core
 - quad-core
System Architecture, cont.

- Blades

- Clusters
 - One OS many computers
 - Beowulf cluster – http://www.beowulf.org/
OS Pieces

- Multiprogramming
 - Job
 - Switching

- Time sharing/multitasking
 - Response time
 - Pre-emptive MT

- Process

- Scheduling
 - Job
 - CPU
OS Pieces, cont.

- Virtual Memory
- Physical Memory
- Security
Operation

• Dual Mode
 – Kernel mode
 • { Supervisor | System | Privileged } mode
 • Hardware bit
 • Privileged instructions
 – Based on CPU type
 – I/O control
 – Interrupt management
 – Stop/Halt
 – Memory management

 – User mode
 • System calls

No mode bit on the original Intel 8088 chip
Hence, MS-DOS originally not dual mode!
Dual-Mode, in action

user process

user process executing \rightarrow \text{calls system call} \rightarrow \text{return from system call}

kernel

trap mode bit = 0
execute system call

return mode bit = 1

user mode (mode bit = 1)

kernel mode (mode bit = 0)
Process Management

• Process
 – Active program
 – Resources
Memory Management