Indexing & Storage Engines

October 26, 2017

Chapter 8

Join

What happens? Primary Key? Index?

Professors

<u>ProfID</u>	FName	LName	StartDate	StatusID
1	D	R	1999-08-01	3
2	S	K	2002-08-01	3
3	С	W	2006-08-01	2
4	С	L	1999-08-01	2

JobStatus

<u>StatusID</u>	Name	PayBonus	Tenure
1	Professor	10000	Yes
2	Associate	1000	Yes
3	Assistant	0	No

```
select * from Prof_Ex where ProfID=1;
select * from Prof_Ex where StatusID=3;
select * from JobStatus Where PayBonus > 100;
select * from Prof_Ex where StartDate > "2001-01-01";
select * from Prof_Ex, JobStatus where Prof_Ex.StatusID=JobStatus.StatusID;
```

MySQL/MariaDB Explain

Join Types

https://dev.mysql.com/doc/refman/5.5/en/estimating-performance.html https://dev.mysql.com/doc/refman/5.5/en/explain-output.html#explain-join-types

Hardware Basics

Disk access time: ~10 msecs

- Memory access time: 60 nanoseconds
 - faster than disk access by ???

We can run many instructions in 10 msecs!

What does it cost to find a row?

Storage Engine

- How is the data stored?
 - file format
 - indexes
 - transactions/concurrency
- MySQL/MariaDB ships with a number of storage engines
 - MyISAM / Aria
 - InnoDB / XtraDB
 - plug-ins can add support for others

https://mariadb.com/kb/en/library/choosing-the-right-storage-engine/https://dev.mysql.com/doc/refman/5.7/en/innodb-introduction.html

5

InnoDB Transactions

- A tomic all changes are either committed as a group, or all are rolled back as a group
- onsistent transactions operate on a consistent view of the data, leaving the data in a consistent state (by transaction's end)
- solated each transaction "thinks" it is running by itself - effects of other transactions are invisible until it commits
- Durable once committed, all changes persist, even if there are system failures

http://www.innodb.com/wp/wp-content/uploads/2008/04/intro-to-innodb-at-the-2008-mysql-uc-final.pdf

Indexing

- Common access methods
 - Scan
 - Equality
 - Range

http://www.innodb.com/products/innodb/info/ Intro to InnoDB at the 2008 MySQL User Conference

Database Files

- Data File data from one table
 - Collection of file pages
 - Each page contains a number of data records
 - InnoDB: 16KB page size
 - One disk access to retrieve each page
 - Data records
 - 1 record = 1 row in a table

Assume each index is tied to exactly 1 column in the table

- Each data record has a record id (rid) <pageid, slotid>
- Can be used to retrieve the record
- Heap file:
- Index File
 - Auxiliary file that matches database indexes to rids

Pacific University

Index Files

- Match index value to rid
- Three types:
 - 1 The data entry is the database row
 - · No auxiliary file
 - Called an indexed file
 - 2 The data entry is a <db index, rid> pair
 - 3 The data entry is a <db index, rid-list> pair
- For any table, you can have one indexed file and many of 2 or 3
- Primary & Secondary indexes

Clustered Indexes

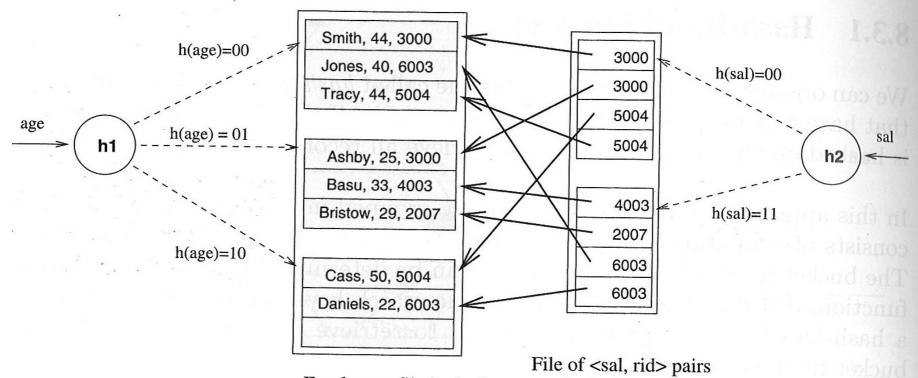
- Data records stored in near sorted order
 - Records in a page are nearly ordered

- Generally, only option 1 is clustered
 - Expensive to keep a file sorted
 - often gaps are kept in the file to allow easy (sorted) insertion

Why would this be useful?

Index Data Structures

- Hash table
 - Chapter 11
 - hash(ActorID) = PageID


- Trees
 - Chapter 10
 - B+ Trees

Hashing

• What is the O() for the access time of a hash table?

• Example: Page 280, Figure 8.2

CHAPTER 8

Employees file hashed on age hashed on sal Ramakrishnan, Gehrke, Database Management Systems, 3rd edition

Figure 8.2 Index-Organized File Hashed on age, with Auxiliary Index on sal

Trees

- Let's review Binary Search Trees
 - fan-out?
 - O() for finding a value in a BST?
 - Why?
 - What problems do BSTs have?

B+ Tree

- B+ Tree
 - rebalancing tree!
 - all paths from the root to any leaf are the same length
 - B+ tree of order b has between (b/2)+1 and b keys per node
 - except the root, between 2 and b keys
 - all data stored at the leaf nodes
 - (B trees can store data in any node)
- Example: page 281, Figure 8.3

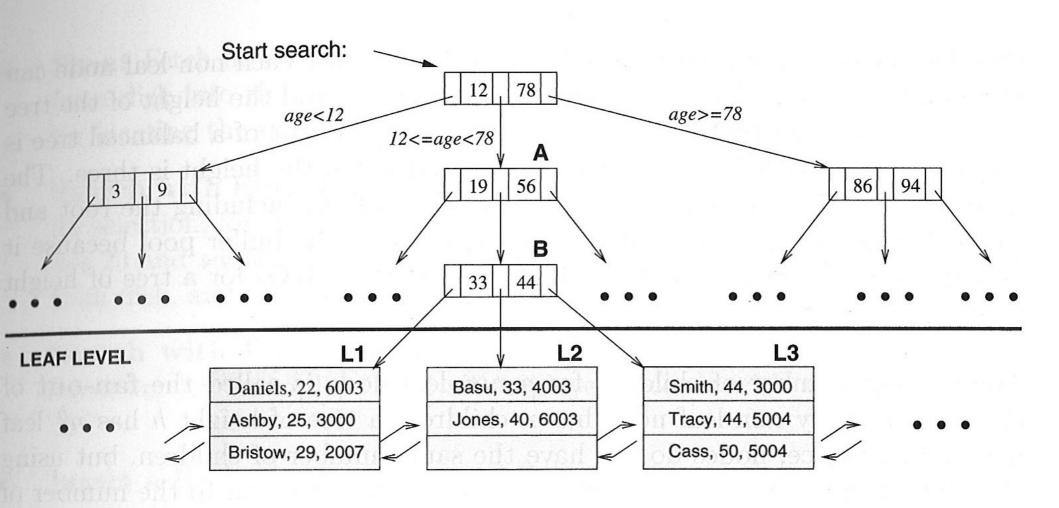


Figure 8.3 Tree-Structured Index

Ramakrishnan, Gehrke, Database Management Systems, 3rd edition CS445

B+ vs BST

- If we have 100,000,000 records
 - how long would it take to find a record with a BST?
 - with a B+ Tree with fan-out 100?
 - 100 is a typical fan-out for a B+ Tree in an index

- Each step in the tree may be a disk read

Comparison

Cost Model

- B: number of data pages
- R: number of records per page
- D: average time to read/write a page
- C: average time to process a record
- H: cost of the hash function
- F: fan-out for trees

Files to compare

- Heap file
- Sorted file
- Cluster B+ tree
- Heap file, B+ tree index
- Heap file, hash index

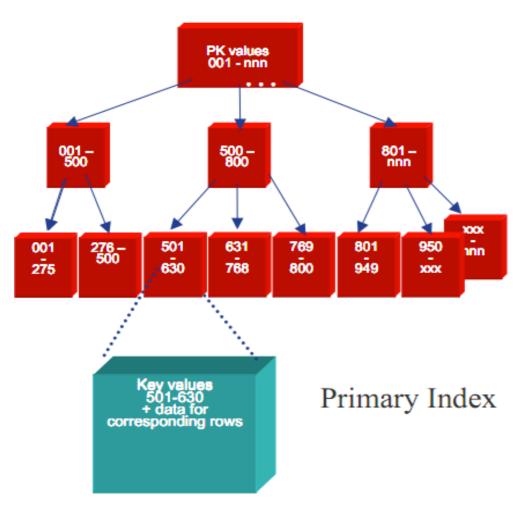
Scan

• I/O costs

Equality

Range

21


InnoDB

https://dev.mysql.com/doc/refman/5.7/en/innodb-tables-indexes.html

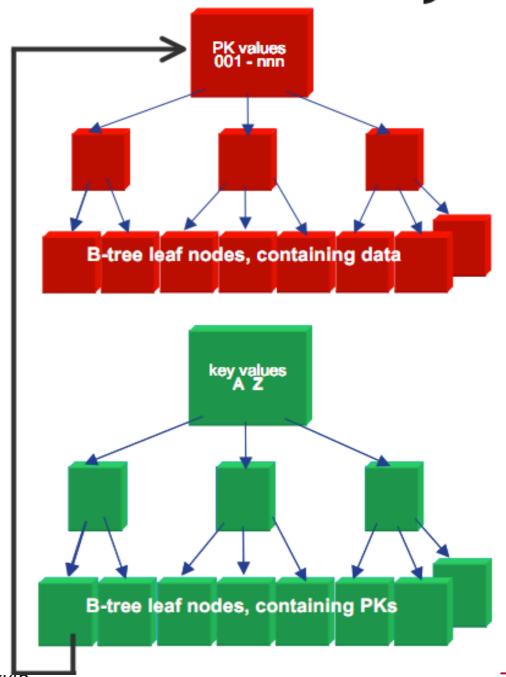
https://dev.mysql.com/doc/refman/5.7/en/innodb-introduction.html

https://dev.mysql.com/doc/refman/5.7/en/innodb-indexes.html

InnoDB Indexes - Primary

- Data rows are stored in the B-tree leaf nodes of a clustered index
 - by primary key or non-null unique key of table, if defined; else, an internal column with 6-byte ROW_ID is added.

http://www.innodb.com/wp/wp-content/uploads/2009/05/innodb-file-formats-and-source-code-structure.pdf


INNOBASE

http://www.innodb.com/wp/wp-content/uploads/2007/04/innodb-overview-mysql-uc-2006-pdf.pdf

InnoDB Indexes - Secondary

Secondary index Btree leaf nodes contain, for each key value, the primary keys of the corresponding rows, used to access clustering index to obtain the data

Secondary Index

Resources

- http://en.oreilly.com/mysql2011/public/schedule/proceedings
 - A Beginner's Guide to MariaDB
 - community version of MySQL

- InnoDB: Status, Architecture, and Latest Enhancements

 http://dev.mysql.com/doc/refman/5.5/en/innodb-indextypes.html

 http://dev.mysql.com/doc/refman/5.5/en/innodbintroduction-features.htmlcs445