CS 445 Introduction to Database Systems

TTh 2:45-4:20pm

Chadd Williams

Overview

- Practical introduction to databases
 - theory + hands on projects
- Topics
 - Relational Model
 - Relational Algebra/Calculus/ Theory
 - Database Design
 - ER Diagrams
 - Structured Query Language (SQL)
 - Web accessible databases / Architecture / Model-View-Controller
 - Non-structured Data (NoSQL)
- There will be a number of lab days for hands on work

Syllabus

Database Management Systems (3rd), Ramakrishnan & Gehrke

•	Grades:		First DB Assignment	Design Docs	8 pts
	Midtores 1	<i>4 E</i> 0 /		MySQL DB	12 pts
	Midterm 1 Midterm 2 Final	15% 15% 20% ▼		Design Docs	25 pts
					'
			Big DB Assignment	MySQL DB	30 pts
	Homework/Labs/Quizzes 10%		big bb Assignment	Web Interface	15 pts
	Database Projects	40%		Presentations	10 pts

- Quizzes: frequent, unannounced, open-note quizzes will be given
- Late Policy: No late assignments accepted
- Grade Complaints: one paragraph summary of why the grade is wrong, within one week of receiving the graded material
- http://zeus.cs.pacificu.edu/chadd/cs445f17

Database Projects

- All database projects are to be done using MariaDB
 - https://mariadb.org/
 - http://www.apachefriends.org/ (XAMPP) LAMP
 - PHP 5 for web projects
- Tools
- dbeaver
- CodeLite
- First DB Assignment
 - Learn to use MySQL & SQL
- Big Database Project
 - You (and a friend) design, document, and implement a database
 - Build a web-based front end
 - 5 minute presentation of your design / 7-10 minute presentation of your final design and implementation

Linux skills are a must

- ssh cat

- cp less

– mv diff

- cd tar

- scp

geany
 If you don't have your zeus

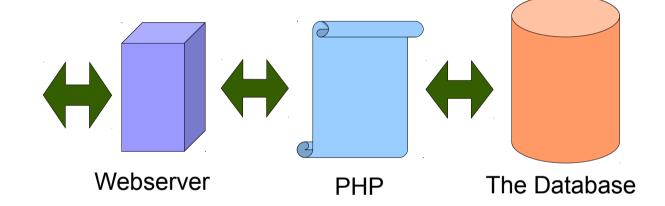
- Is password, see me soon!

Introduction to Databases

Read Chapter 1

- What's a database?
 - DBMS?

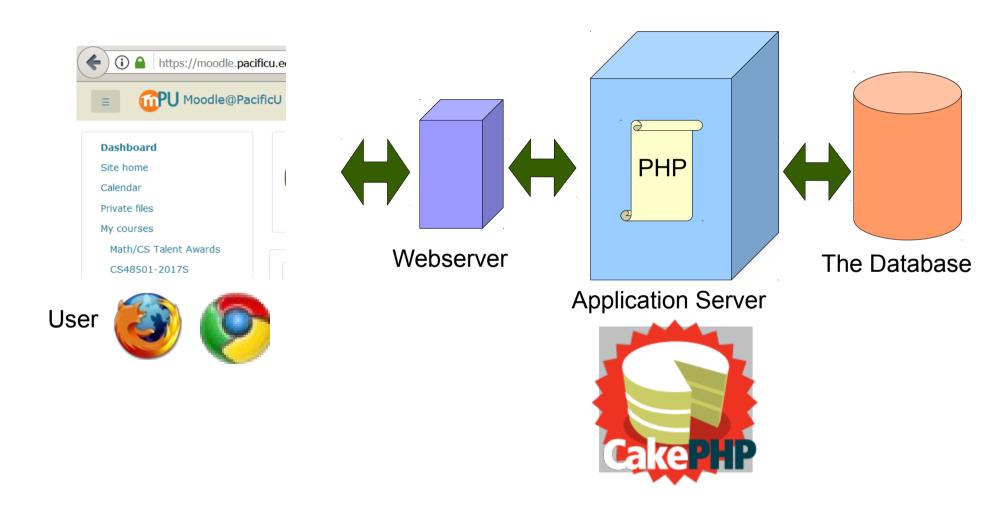
Why do we use one?


Who uses one?

How do we model the data?

Review Questions at the end of each chapter are great exam and quiz study guides.

Basic Database Usage Scenario



More Complicated Database Usage Scenario

Database Trends

SQL / RDBMS

- relational database systems
- entities are related to other entities
- relationships my optionally have attributes
- strict structure of data (tables, (rows, columns, datatypes))
- SQL: Structured Query Language
- Very powerful and expressive
 - ad-hoc queries
- ACID: strict guarantees of correctness
 - Atomicity, Consistency, Isolation, Durability
- Online Analytical Processing (OLAP)
 - business intelligence
 - complex queries / ad hoc queries
 - structured data
- originally: poor performance on web scale data

Database Trends

NoSQL

- built for web data
- Online Transaction Processing (OLTP)
 - poorly defined
 - availability, speed, concurrency, recoverability
 - high throughput/insert or update intensive
 - web services
 - often no ad-hoc queries
- Schema-less (collection of fields)
- built for big data / lots of text data (document store, graphs)
- Availability/Scalability/Low Latency
- Distributed (Consistency/Availability/Partition Tolerance (2))
- may sacrifice consistency

Database Trends

NewSQL

- Relational data model
- Make SQL scalable like NoSQL
- Maintain ACID
- non-locking concurrency (reads and writes don't conflict)
- high per node performance
- scale-out, shared nothing architecute
- Online Transaction Processing (OLTP)
- VoltDB
- MySQL Cluster database engine

Why not just use a text file/file system/XML?

- Data Independence
- Efficient Data Access
- Data Integrity and Security
- Data Administration
- Concurrent Access/Crash Recovery
- Reduced Application Development Time

(page 9)

Storing data in the DB

- Data Models
- Semantic Data Model (high level)
 - Entity-Relationship (ER) Model
 - Entity:
 - Relationship:
- Relational Data Model (low level)

- Schema
- Constraints/Integrity

Relational Databases

- Well defined structure of data
 - schema

Flexible queries

NoSQL databases schema

queries

What's inside a Relational database?

Tables

Indexes/Keys

Data

How do we access the data?

- Query Language
 - Structured Query Language (SQL)
 - What types of queries can we run?

What about multiple users?

Transactions

Concurrency

Dirty Details

• Figure 1.3 page 20

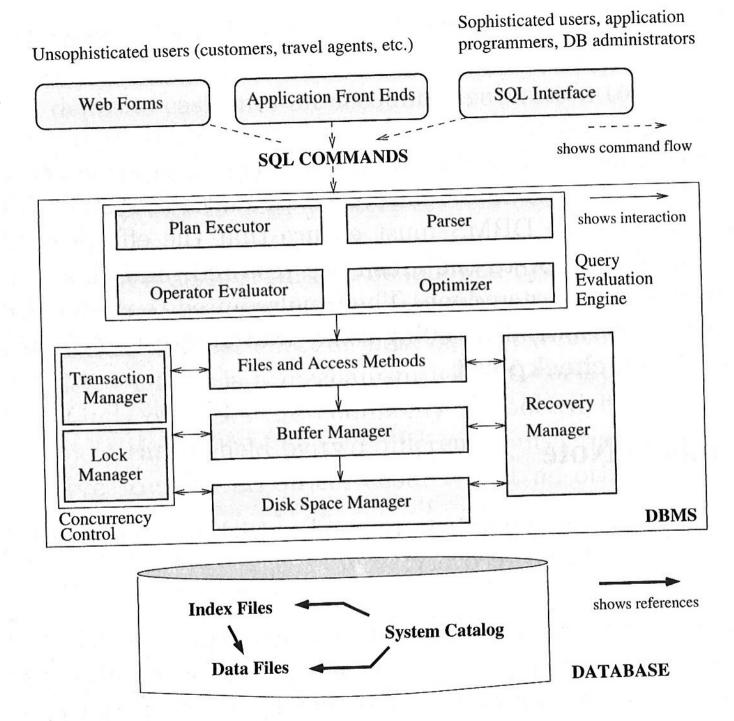


Figure 1.3 Architecture of a DBMS