CS 445
Introduction to Database Design
E-R Diagrams

Chapter 2

September 2, 2009
Design Steps

• Read Chapter 2
 – homework: page 52: 2.2 (1–5) (Due Sept 14)

• How do we model the data?
 – what do we need to identify?
Design Steps

• Requirement Analysis
 – talk to the user!

• Conceptual Database Design
 – E–R Diagram

• Logical Database Design
 – logical schema

• Schema Refinement
 – normalization

• Physical Database Design
 – performance tuning

• Application and Security Design
 – GUI / end user software
Bits of Data

• Entity
 - some particular object in the real world

• Entity Set

• Attribute
 - domain
 - key
 - candidate key
 - primary key
Doing interesting things with data

- Relationship
 - association among two or more entities

- Relationship Set

- Descriptive attribute

- Roles
Constraints

• What limits are placed on how entities are involved in a relationship
 - Key Constraints
 • One to many
 • Many to many
 • One to one
 - Participation Constraints
Weak Entities

- Entities without keys!
- Identifying owner

- Identifying relationship
Class Hierarchy

• Some entities may be related
 – similar to Object Oriented class hierarchy
 – C++/Java
 – superclass
 – specialized subclasses

• Inheritance
 – ISA

• Overlap constraints
Aggregation

• View a set of entities/relationships as one big entity
 – meta-entity
How do we use all this?

• When do we use an entity vs an attribute to represent data?
 – it all depends on how you want to use the data
 – how many other bits of data will reference it?
 – how will they reference it?
 • will our model allow that?

• Example: Name and Address
How do we use all this?

- When do we use an entity vs a relationship?
Tool Support

• E–R diagram builders
 – Microsoft Visio
 – MySQL Workbench (alpha, buggy, promising)

• Unified Modeling Language (UML)
 – used to model all kinds of data interactions
 – Object Oriented code design
 – database design
 • think of entities and relationships as classes
 – Use cases (process flow)
 – http://argouml.tigris.org/
Key Constraints

- emp MANAGES dept
- each emp can manage more than one dept
- each dept is managed by only one emp
 - Each dept key appears in ONE MANAGES relationship
 - ONE TO MANY
 - one employee can be associated with MANY depts
 - each dept associated with ONE emp
 - what if each emp ONLY managed ONE dept? (ONE TO ONE)

- emp WORKSIN dept
 - each emp can work in several depts
 - each dept has several emp
 - MANY TO MANY
 - what is each emp worked in only one DEPT?