Recurrence Relations – Running Time for Recursive Functions

Chapter 2
Gnome Sort - *trivia*

http://www.portlandoctopus.com/top-5-garden-gnomes/
Divide and Conquer Algorithms

• Analysis of divide and conquer algorithms requires knowledge of:
 ◦ Mathematical Induction
 ◦ Substitution/Iterative Method
 ◦ Recurrences
class Tree
{

public:

 // returns true if t represents a binary search tree containing no duplicate values;
 bool IsBST();

 // return true if & only if all values in the tree are less than val
 bool isLessThan(int val);
 // see above
 bool isGreaterThan(int val);

private:

 int mInfo;
 Tree * mpsLeft;
 Tree * mpsRight;
};
bool IsBST()
{
 bool bLeftIsTree = true, bRightIsTree = true;
 bool bLessThan = true, bGreaterThan = true;
 if(t->left)
 {
 bLeftIsTree = t->left->IsBST();
 bLessThan = t->left->isLessThan(t->info);
 }
 if(t->right)
 {
 bRightIsTree = t->right->IsBST();
 bGreaterThan = t->right->isGreaterThan(t->info);
 }
 return bLessThan &&
 bGreaterThan &&
 bLeftIsTree &&
 bRightIsTree;
}
Another Example

- What is the asymptotic complexity of the function below? Assume Combine is $O(n)$

```cpp
// postcondition: a[left] <= ... <= a[right]
void DoStuff(vector<int> & a, int left, int right)
{
    int mid = (left + right)/2;
    if (left < right)
    {
        DoStuff(a, left, mid);
        DoStuff(a, mid + 1, right);
        Combine(a, left, mid, right);
    }
}
```
Recurrence Relation

- A *recurrence relation* contains two equations
 - One for the general case
 - One for the base case
Efficiency of Binary Search
Merge Sort

- \textsc{merge-sort}(A, p, r) \textcolor{red}{//} A: Array; p, r: ints
 \textcolor{red}{//} p & r are indices into the array (p < r)
 if p < r \textcolor{red}{//} Check for base case
 q = \lfloor (p + r) / 2 \rfloor \textcolor{red}{//} Divide
 \textsc{merge-sort}(A, p, q) \textcolor{red}{//} Conquer
 \textsc{merge-sort}(A, q + 1, r) \textcolor{red}{//} Conquer
 \textsc{merge}(A, p, q, r) \textcolor{red}{//} Combine
Recurrence Relation

• Let $T(n)$ be the time for Merge-Sort to execute on an n element array.

• The time to execute on a one element array is $O(1)$

• Then we have the following relationship:
Merge Sort

- To solve the recurrence relation we’ll write n instead of $O(n)$ as it makes the algebra simpler:
 - $T(n) = 2 \ T(n/2) + n$
 - $T(1) = 1$

- Solve the recurrence by iteration (substitution)

- Use induction to prove the solution is correct
Recurrence Relations to Remember

<table>
<thead>
<tr>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = T(n/2) + O(1)$</td>
</tr>
<tr>
<td>$T(n) = T(n-1) + O(1)$</td>
</tr>
<tr>
<td>$T(n) = 2 \ T(n/2) + O(1)$</td>
</tr>
<tr>
<td>$T(n) = T(n-1) + O(n)$</td>
</tr>
<tr>
<td>$T(n) = 2 \ T(n/2) + O(n)$</td>
</tr>
</tbody>
</table>
Approaches to Algorithm Design

• Incremental
 ◦ Job is partly done – do a little more, repeat until done.

• Divide-and-Conquer (recursive)
 ◦ Divide problem into sub-problems of the same kind.
 ◦ For small subproblems, solve, else, solve them recursively.
 ◦ Combine subproblem solutions to solve the whole thing.
Your Turn

• Solve the following recurrence relation using the expansion (iteration) method
 - $T(n) = T(n-1) + 2n -1$
 - $T(0) = 0$
For Next Time

• So far we’ve covered chapters 1, 2, and 3.