
CS 360 Special Topics: Computer Networking
Spring 2007 DUE: Feb 13, 2007

Assignment #1 20 points

Introduction to Socket Programming

The focus of this assignment is to become familiar with the Berkeley UNIX socket networking interface.

In particular, this assignment requires the use of Internet-domain sockets and UDP for communication

between a client and server. For this assignment, you will need to use the machines in the CS lab booted

into Linux or zeus/ada for little-endian machines and circe for a big-endian machine. Remember, you

are required to use Subversion to manage your source code.

The Network Calculator

You are to write a client and a server for this assignment. The server will accept requests to perform

simple math operations on integer values and return the result. The client will parse a request to perform

a math operation from its command line arguments and send this request to the server. The client will

display to the screen the result sent back by the server.

The server will always return a 32 bit integer result for add, subtract and multiply requests. For division,

the server will return either a 32 bit floating point number or a 32 bit integer, whichever is appropriate.

For example, 100 divided by 10 should return 10, but 5 divided by 2 should return 2.5. On zeus, both an

int and float are 32 bits.

The MathPacket

To perform this operation, we need to define a protocol for requests and responses and define how the

data will be transferred. The client and server will each send and receive a MathPacket. The layout of

the MathPacket is as follows, each of the following dashes represents one bit:

|<-------------32 bits ----------->|
|--------|--------|----------------|
|PackType|Version |xxxxxxxxxxxxxxxx|
| Operand One |
Operand Two

The bits marked with an x are unused and may be used in a future version of the packet.

Version should be set to: 00000001 for this assignment.

PackType is as follows:
00000001 Request Add
00000010 Request Subtract
00000100 Request Multiply
00001000 Request Divide
11111110 Result of an Add
11111101 Result of a Subtract
11111011 Result of a Multiply
11110111 Result of a Divide (integer result)
11110110 Result of a Divide (float result)
01111111 Error: invalid PackType
10111111 Error: invalid Version
11011111 Error: invalid packet size

Operand One and Operand Two are both 32 bit fields. Any type of Request packets will

provide an integer in each of the Operand One and Operand Two fields. The Result packets will

return the result of the operation in the Operand One field. The value in the Operand Two field in

Result packets is unspecified and should be ignored by the client.

The fields in the MathPacket should be transmitted in big-endian order. Intel CPUs are little-endian.

You should use the htonX and ntohX family of functions to achieve this.

There are a number of ways to correctly implement the int/float dichotomy for Operand One.
The solution is left to the implementer.

The Client

The client should take 5 command line arguments: the IP address of the server, the port the server is

listening on, the operation to perform (a, s, d, m), and two integers to serve as Operand One and

Operand Two, in that order. The client should send one request, print the result and then terminate.

The client should print the following message upon success, where the # is replaced with the value

returned from the server:

 Result: #

Upon receiving an Error packet back from the server, the client should display one of the following error

messages:

 Error: Wrong Packet Version returned from server
 Error: Invalid Packet Type
 Error: Invalid Packet Size

The Server

The server should take one command line argument: the port on which to listen. The server should loop

forever handling requests. The server should return a packet of type Error if the request packet has an

invalid PackType, invalid Version, or is the wrong size. The server should not print anything to the
screen.

Reference Implementation

The goal of establishing a common protocol and packet layout is to allow anyone’s client and server to

interact with anyone else’s. To facilitate this, you may send requests to: zeus (64.59.233.197) port: 9998

to test against the sample solution server. Zeus is a little endian machine. Send requests to Circe

(64.59.233.204) port 9998, to test against a server on a big endian machine.

What and How to Submit

You must submit TWO .c files, one for the client and one for the server, and ONE .h file that contains

the data structure for the MathPacket and any extra data or #defines you deem necessary. The source

code should be well documented and conform to the Coding Standards. You will also need to submit

ONE Makefile that will build your client as an executable file named client and build your server as

an executable file named server. The names of the targets for these two files should be client and

server, respectively. The Makefile should also build both client and server by default if no command

line arguments are given to the make command. You also need to submit the .svn directory that

contains your subversion information.

You will need to roll all FOUR of these files and ONE directory into a gzipped tar file named

PUNetID_cs360s07_PA1.tar.gz and submit that electronically using the submit script on zeus as

detailed in lecture. You also need to turn in a (color) hard copy of all FOUR files at the beginning of

class on Feb 13
th
. Both the electronic and paper submissions must be made by 1pm, Feb 13

th
.

How will this be graded?

Your client and server should work for all permutations of

the client is on a little- or big-endian machine

the server is on a little- or big-endian machine

the client and server are both running on the same machine

the client and server are running on different machines.

Incorrect format for the output of the client: lose 5 points

Does not work with the reference implementation: lose 10 points

Hints

You should define the data structure (a struct) for the MathPacket in a header file that can be shared

between the client and server. This header file should also #define some things to make your code

readable.

You will need to look at the man pages for socket, inet_addr, htons, recvfrom,

sendto, close, etc.

You should be able to run the client and server on the same machine or on two different machines and

achieve the same result. Remember, the IP address for the localhost is 127.0.0.1.

In order for multiple people to work on this assignment at the same time on the same machine, each of

you will need to stay to your assigned ports (http://zeus.cs.pacificu.edu/chadd/cs360s07/ports.html).

When you recvfrom a socket, the 5th parameter gives you the address and port the data was sent from.

This data structure may be useful to send a response back to the machine that just sent you data.

To test your code on a big-endian machine, use circe.cs.pacificu.edu (64.59.233.204). Be sure to test a

client running on a little endian machine talking to a server on a big endian machine, and vice-versa.

Extra Credit

+2 points: have your client accept a DNS name or IP address as the first command line argument.

Start on this today! Come see me with questions tomorrow and Monday!

Be prepared to demo your client and server in class on Feb 13
th
!

