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Git

Distributed Version Control System

http://git-scm.com/

http://git-scm.com/doc

https://help.github.com/articles/what-are-other-good-
resources-for-learning-git-and-github

https://www.atlassian.com/git/tutorials/learn-git-with-bitbucket-
cloud/

http://githowto.com/
https://github.com/git/git
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Goal of Version Control

● Other options besides Git:
– CVS, Subversion, Bazaar, BitKeeper, Team Foundation Server, 

ClearCase, Mercurial (hg)
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History

● Allow multiple people to work on the same software easily

● Allow a single user to track all his/her changes

● Developed for use with the Linux Kernel

– move away from proprietary BitKeeper

● Modeled after Linux Kernel work flow

– branches

– distributed

– data assurance

● Mix of local and remote repositories

http://git-scm.com/about

Let's first look at using the command line then we'll look at GitHub.
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Workflows

https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
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Workflows

https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
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Workflows

https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
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Documentation

● http://git-scm.com/docs/

– link to GitHub cheat sheet (PDF - 2 pages)

– videos

– free book (Pro Git)

– http://git-scm.com/book/en/Git-Basics-Undoing-Things

– https://git-scm.com/book/en/v2/Git-in-Other-Environments-Git-
in-Bash

● integrate git support into bash
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Setup
● Open a terminal

– terminator

● Go to Documents

script -a --timing=GitIntro.tm GitIntro.txt

git config --global core.editor "nano"

# script will terminate when you type exit!

● Open two more terminals, don’t start script!

– double click punetid@linux, change names to One, Two, Three

– make sure One is running script!
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Typical Workflow - Single User

– git init

● builds the repository (.git directory)
● the repository is in your local working directory

– create .gitignore
● list types of files to not put into version control

– any file that is generated: *.obj, *.o, *.class, *.pyc
– Create files!  Do work!

– git add [filenames]

● add the files you just created to the index for staging

– git commit -m “commit message”

● actually commit changes to the repository

– git log

http://git-scm.com/docs
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Typical Workflow - Single User

– mkdir MyCoolProject.git; cd MyCoolProject.git

– git init

– ls -al

– geany .gitignore

● *.o

● test

– create test.c from the next slide

– gcc -c -o test.o test.c

– gcc -o test test.o 

– git add test.c

– git commit -m “initial add of test.c”

– git log

http://git-scm.com/docs

One
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test.c

#include <stdio.h>

int main()
{
  printf(“HELLO”);
  return 0;
}
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Typical Workflow - Single User

– edit test.c to include printf(“-BYE\n”); 

– gcc -c -o test.o test.c

– gcc -o test test.o 

– git add .

– git status

– git commit -m “updated test.c to say BYE”

– git log

http://git-scm.com/docs

One
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I need to revert!     
● http://git-scm.com/book/en/Git-Basics-Undoing-Things
● git log --name-status

● git diff <commit hash> test.c

● git checkout <commit hash> test.c

● edit test.c

● git add .

● git commit

● git log

* two dashes precede a command line option of more than on character

http://stackoverflow.com/questions/215718/reset-or-revert-a-specific-file-to-a-specific-revision-using-git/373848
#373848

One
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Branches
● Master

– Main line of development

– Often this is always kept buildable

● Branches

– Initially a copy of Master (not always…)

– Used to build a feature

– Used to fix a bug

– Not necessarily always buildable

– Not necessarily public

● Maybe local to a developer
– This is where your organization’s culture comes into play.

http://stackoverflow.com/questions/215718/reset-or-revert-a-specific-file-to-a-specific-revision-using-git/373848#373848
http://stackoverflow.com/questions/215718/reset-or-revert-a-specific-file-to-a-specific-revision-using-git/373848#373848
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Typical Workflow
● Single user – bug fix! (or maybe feature add)

master

bug1827

git branch
git checkout

c

c

c

c

c

git merge

commit

http://git-scm.com/docs/git-merge

You might merge master into
bug1827 if the changes in
master are relevant to bug1827
but you are not done with bug1827.

Merges are non-destructive. Both
branches continue to exist and
can be used/edited/committed/branched. 

https://www.atlassian.com/git/tutorials/merging-vs-rebasing/
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Typical Workflow
● Single user – bug fix! (or maybe feature add)

– git branch bug1827

● create a branch to contain all the work for the bug fix

– git checkout bug1827

● start using that branch

– Do work (add/commit)

– git checkout master 
to work on master again.

– git merge --no-ff bug1827

● replay the commits on bug1827 into master

– git log

– git branch -d bug1827

master

git branch
git checkout

c

c

c

c

c

git merge

commit

http://git-scm.com/docs/git-merge

bug1827
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Typical Workflow
● Single user – bug fix! (or maybe feature add)

– git branch bug1827

– git checkout bug1827

– Add printf(“CS360\n”); to test.c

– git add .

– git commit -m “added CS360 line”

– git log

– git checkout master

– cat test.c 

– git merge --no-ff bug1827

– git log

– git status

– git branch

– git branch -d bug1827 master

git branch
git checkout

c

c

c

c

c

git merge

commit

http://git-scm.com/docs/git-merge

bug1827

One
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Typical Workflow
● Single user – bug fix! (or maybe feature add)

– git log --graph

– git blame test.c

– add printf(“Come back later”);

– cat test.c

– git stash

– cat test.c

– git stash list

– git stash show

– git stash apply

– cat test.c

– git add .

– git commit -m “committed stashed line”

– git log master

git branch
git checkout

c

c

c

c

c

git merge

commit

http://git-scm.com/docs/git-merge

bug1827

One



09/23/16
CS360

Pacific University 20

Typical Workflow
● Single user – bug fix! (or maybe feature add)

– git branch MERGE_CONFLICT

– git checkout MERGE_CONFLICT

– add ! to “come back later”

– git add .

– git commit -m “added bang”

– git checkout master

– add <> to “come back later”

– git add .

– git commit -m “added angles”

– git merge MERGE_CONFLICT

– edit test.c and choose which lines to keep

– git add .

– git commit -m “fixed merge conflict” master

git branch
git checkout

c

c

c

c

c

git merge

commit

http://git-scm.com/docs/git-merge

bug1827

One
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Typical Workflow
● Single user – bug fix! (or maybe feature add)

– git log --graph

– git blame test.c

– git branch -d MERGE_CONFLICT

– git log --graph

master

git branch
git checkout

c

c

c

c

c

git merge

commit

http://git-scm.com/docs/git-merge

bug1827

One
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More commands
● http://git-scm.com/docs

– git stash

– git status

● what files have uncommitted changes?

– git log

● show the commits and log messages

– git diff

● show the differences between local and committed files
● build a patch you can email to someone else

– git apply 

● apply a patch to your working directory

– git blame

● who last changed each line of a file?

– git bisect

● try to determine when a property of your project changed
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Workflow - Group
● http://nvie.com/posts/a-successful-git-branching-model/

● http://scottchacon.com/2011/08/31/github-flow.html
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Typical Workflow - group
● Group of developers

– someone else: git init  --bare --shared

– git clone address

● pull down code and setup origin

● git remote -v

– git branch bug1138

● only a local branch is created

– git checkout bug1138

– do work

– git add files / git commit

– git checkout master

– git merge --no-ff bug1138

– git push origin master

– git branch -d bug1138

repository 
at address

your local
repository

bug1138

master

master

origin
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Typical Workflow - group
● Group of developers

– setup the remote repos

– ssh zeus.cs.pacificu.edu

– mkdir gitTest.git; cd gitTest.git

– git init  --bare --shared

repository 
at address

your local
repository

bug1138

master

master

origin

Two
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Typical Workflow - group
● Group of developers

– cd ~/Documents

– git clone 
ssh://YOU@zeus.cs.pacificu.edu/home/YOU/gitTest.git

– cd gitTest

– git remote -v

– create test.c

– git add .  

– git commit -m “initial commit”

– git push origin master

● in terminal Two: git log

One
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Typical Workflow - group●

– git branch bug1138

– git checkout bug1138

– git branch

● in terminal Two: git branch

– edit test.c / git add files / git commit

– git log

● in terminal Two: git log

– git checkout master

– git merge --no-ff bug1138

– git branch

– git push origin master

● in terminal Two: get log --graph ; cat test.c

– git branch -d bug1138

One
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Typical Workflow - group
git fetch

git log ..origin/master

git checkout origin/master

git checkout master

git merge origin/master

OR

git pull

– git pull performs lots of magic

– hard to fix things when magic fails.

Get changes from
origin
(remote repos)
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Typical Workflow - group●

– mkdir ~/Documents/Fetch; cd ~/Documents/Fetch

– git clone 
ssh://YOU@zeus.cs.pacificu.edu/home/YOU/gitTest.git

– cd gitTest

– git remote -v

– cat test.c

– git checkout -b FetchMe 

– edit test.c / git add files / git commit -m “fetch”

– git log

– git checkout master

– git merge --no-ff FetchMe

– git branch

– git push origin master

– git branch -d FetchMe

Three
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Typical Workflow - group●

– ls -al

– cat test.c

– git fetch

– git log ..origin/master

– git checkout origin/master

– git checkout master

– git merge origin/master

– edit test.c/add /commit -m “again”

– git push origin master

● in terminal Three: 

– git pull
– cat test.c
– git log

One
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Conflict
● edit/add/commit/push

● fetch/merge

● edit/add/commit/push (ERROR)
● fetch/merge (ERROR)
● edit file (resolve conflict)

● add/commit/push

<<<<<<< HEAD
BUY
=======
BYE
>>>>>>> origin/master
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Tag

● git tag -a MarkTwo -m “this is a tag”

● git push --follow-tags

● git log --decorate=full

One

https://www.atlassian.com/git/tutorials/refs-and-the-reflog/

A tag is just one type of ref.

A ref is an alias for a particular commit.

Other types of refs are branch names and remotes.

Branches are easy in Git since they are just an 
alias for a particular commit. (mostly)
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Pull Request

● git checkout -b Request-Pull

● edit test.c

● git add .

● git commit -m "email"

● git checkout master

● git merge --no-ff Request-Pull

● git push origin master

● git request-pull MarkTwo 
ssh://YOU@zeus.cs.pacificu.edu/home/YOU/git
Test.git  master

One
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Cherry Pick

● git cherry-pick <commit-hash>

● pick a commit from one branch and reapply that 
one commit to another branch

– rather than merge all the commits on the branch at 
the current location



Rebase
● Move a set of commits from one starting point to another

– “integrate changes from one branch to another”

– “The golden rule of git rebase is to never use it on public 
branches.”

– “potentially catastrophic” for collaboration

https://www.atlassian.com/git/tutorials/merging-vs-rebasing/

https://medium.freecodecamp.com/git-rebase-and-the-golden-rule-explained-70715eccc372

Automatic
vs interactive
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Typical Workflow - GitHub
● Individual

– Create repository at GitHub
● setup .gitignore and license.

– git clone git@github.com:USER/REPOS.git

● pull down code and setup origin

– git checkout -b bug1138

– do work

– git add files

– git commit …

– git checkout master

– git merge --no-ff bug1138

– git push origin master
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Typical Workflow - GitHub
● Group of developers

– someone else creates a repository on GitHub (OTHERUSER)

– on your GitHub account, fork the repository

– git clone git@github.com:USER/repos.git

– git remote add upstream  
git@github.com:OTHERUSER/FirstGitPractice.git

– git checkout -b bug1138

– do work/add/commit

– git push origin bug1138

● push to YOUR GitHub repository

– On GitHub, issue a Pull request!

– git fetch upstream

– git merge upstream/master
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repository at    // public or master
zeus/home/YOU/gitTest.git

master

your local 
repository (#1)

master

your local repository
(#2)

master

1. git init --bare

2. git clone

3. git push

4. git clone

5. git push

6. git fetch

Last time ....



09/23/16
CS360

Pacific University 39

Forks and branches
● Correct usage: I used branches

– https://github.com/chaddcw/pullRequestTesting

– https://github.com/cs360f16/pullRequestTesting

● Horrible mess: I did not use branches :( 

– https://github.com/chaddcw/pullRequestTesting

– https://github.com/cs360f14/ContactManager-Example-C

– https://github.com/cs360f16/ContactManager-Example-C
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repository at 
github.com/GROUP/REPOS

master
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repository at 
github.com/USER/REPOS

repository at 
github.com/GROUP/REPOS

master
master
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repository at 
github.com/USER/REPOS

your local
repository

master

repository at 
github.com/GROUP/REPOS

origin

master
master

git clone git@github.com:USER/REPOS.git
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repository at 
github.com/USER/REPOS

your local
repository

master

repository at 
github.com/GROUP/REPOS

upstream

origin

master
master

git remote add upstream git@github.com:GROUP/REPOS.git 



09/23/16
CS360

Pacific University 44

repository at 
github.com/USER/REPOS

your local
repository

bug1138

master

repository at 
github.com/GROUP/REPOS

upstream

master
originmaster

git branch
git checkout
# do work
git add 
git commit
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repository at 
github.com/USER/REPOS

your local
repository

bug1138

master

repository at 
github.com/GROUP/REPOS

upstream

bug1138

master
originmaster

git push origin bug1138
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repository at 
github.com/USER/REPOS

your local
repository

bug1138

master

repository at 
github.com/GROUP/REPOS

upstream bug1138

master
originmaster

use web browser to merge
 (if no conflicts)
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repository at 
github.com/USER/REPOS

your local
repository

bug1138

master

repository at 
github.com/GROUP/REPOS

upstream bug1138

master
originmaster

use web browser to merge
 (if no conflicts)
  OR
git clone # to group owner’s local machine
git checkout -b pullreq_bug1138
git pull github.com/USER/REPOS bug1138
# fix merge conflict
git add/git commit
git checkout master
git merge --no-ff pullreq_bug1138
git push origin master
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repository at 
github.com/USER/REPOS

your local
repository

bug1138

master

repository at 
github.com/GROUP/REPOS

upstream bug1138

master
originmaster

git fetch upstream master
git merge upstream/master
git branch -d bug1138
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repository at github.com/USER/REPOS

your local
repository

master

repository at 
github.com/GROUP/REPOS

upstream bug1138

master
originmaster

git push origin master

git branch -d bug1138
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Forks and branches
● Correct usage: I used branches

– https://github.com/chaddcw/pullRequestTesting

– https://github.com/cs360f16/pullRequestTesting

● Horrible mess: I did not use branches :( 

– https://github.com/chaddcw/pullRequestTesting

– https://github.com/cs360f14/ContactManager-Example-C

– https://github.com/cs360f16/ContactManager-Example-C
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https://github.com/cs360f14/FirstGitPractice/pull/2
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Providers
● GitHub

– free ($$$), proprietary (not open)

– Go get a GitHub account and email me your username

● GitLab

– open source

– https://about.gitlab.com/

– https://gitlab.com/gitlab-org/gitlab-ce/
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CI
● http://docs.travis-ci.com/user/getting-started/

● http://computer-vision-talks.com/articles/2014-02-23-using-
travis-ci/
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Practice: DUE: Monday, noon

● Build a new local git repository in 
~/Documents/CS360Practice_PUNetID

● Add the file test.c that prints Hello World

● Add the file test.txt that states “test.c prints Hello World”

● Add a .gitignore file that ignores *.o files and the 
executable named test

● Commit all the files.

● Tag this revision as “INIT_COMMIT”

● Make a branch for a feature add: FA_Name 

– add code to test.c that prints your name

– update test.txt to document your change

– commit all the files to the branch
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Practice
● Switch back to master and make a branch for a feature add: 

FA_Git

– add code to test.c that prints I love git

– update test.txt to document your change

– commit al lthe files to the branch

● Switch back to master

● Merge the FA_Name branch to master

● Tag this commit as ADDED_NAME

● Merge the FA_Git branch to master

– resolve any merge conflicts!

● Tag this commit as ADDED_GITLOVE

● Don’t delete the branches
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Submit your practice!
● git log --decorate=full --name-status > punetid_git_log.txt

● cd ..

● tar czf CS360_Git_PUNetID.tar.gz CS360Practice_PUNetID

● scp CS360_Git_PUNetID.tar.gz YOU@zeus.cs.pacificu.edu:

● ssh YOU@zeus.cs.pacificu.edu

● submit cs360f16 CS360_Git_PUNetID.tar.gz

● Leave clear, useful commit messages.

● You can work on 

– your own machine

– a lab machine

– ssh to zeus.cs.pacificu.edu 
● note: zeus likely does not have a Documents folder!



commit 2a50c7dffddffb8c59356945bf77f881f78f4145 (HEAD -> refs/heads/master, 
tag: refs/tags/ADDED_GITLOVE)

Merge: 68099dd 8bce123

    fixed merge conflicts

commit 68099dd6347be782f7af2c40c6fbe6bb64b3d32a (tag: refs/tags/ADDED_NAME)
Merge: f75bfa4 cb0828d

    Merge branch 'FA_NAME'

commit 8bce1233f6f9be1673a2ec840dcdd7a518a20633 (refs/heads/FA_Git)

    added I love git

M test.c
M test.txt

commit cb0828d1e773c40c81171666517c1402e03488e0 (refs/heads/FA_NAME)

    prints my name

M test.c
M test.txt

commit f75bfa4892eb8fc8dc534c71ccbd931a75c6bbeb (tag: refs/tags/INIT_COMMIT)

    initial commit

A .gitignore
A test.c
A test.txt



commit 7b78d4ede35747f2b108390c3d5a0c5178fef0b0 (HEAD -> refs/heads/master)
Merge: eccc9ea 007f0f5

    ADDED_GITLOVE

commit 007f0f548929096e0db791071e642bcd4d976247 (refs/heads/FA_git)

    ADDED_GITLOVE

M test.c
M test.txt

commit eccc9ea2246ab2f8abfb890cb99e0c04a17fd54d (refs/heads/FA_Name)

    ADDED_NAME

M test.c
M test.txt

commit 1e63953f391a17b389005de635c53c3263b68a5c

    INIT_COMMIT

A .gitignore
A test.c
A test.txt
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