
09/23/16
CS360

Pacific University 1

Git

Distributed Version Control System

http://git-scm.com/

http://git-scm.com/doc

https://help.github.com/articles/what-are-other-good-
resources-for-learning-git-and-github

https://www.atlassian.com/git/tutorials/learn-git-with-bitbucket-
cloud/

http://githowto.com/
https://github.com/git/git

09/23/16
CS360

Pacific University 3

Goal of Version Control

● Other options besides Git:
– CVS, Subversion, Bazaar, BitKeeper, Team Foundation Server,

ClearCase, Mercurial (hg)

09/23/16
CS360

Pacific University 4

History

● Allow multiple people to work on the same software easily

● Allow a single user to track all his/her changes

● Developed for use with the Linux Kernel

– move away from proprietary BitKeeper

● Modeled after Linux Kernel work flow

– branches

– distributed

– data assurance

● Mix of local and remote repositories

http://git-scm.com/about

Let's first look at using the command line then we'll look at GitHub.

09/23/16
CS360

Pacific University 5

Workflows

https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

09/23/16
CS360

Pacific University 6

Workflows

https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

09/23/16
CS360

Pacific University 7

Workflows

https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

09/23/16
CS360

Pacific University 8

Documentation

● http://git-scm.com/docs/

– link to GitHub cheat sheet (PDF - 2 pages)

– videos

– free book (Pro Git)

– http://git-scm.com/book/en/Git-Basics-Undoing-Things

– https://git-scm.com/book/en/v2/Git-in-Other-Environments-Git-
in-Bash

● integrate git support into bash

09/23/16
CS360

Pacific University 9

Setup
● Open a terminal

– terminator

● Go to Documents

script -a --timing=GitIntro.tm GitIntro.txt

git config --global core.editor "nano"

script will terminate when you type exit!

● Open two more terminals, don’t start script!

– double click punetid@linux, change names to One, Two, Three

– make sure One is running script!

09/23/16
CS360

Pacific University 10

Typical Workflow - Single User

– git init

● builds the repository (.git directory)
● the repository is in your local working directory

– create .gitignore
● list types of files to not put into version control

– any file that is generated: *.obj, *.o, *.class, *.pyc
– Create files! Do work!

– git add [filenames]

● add the files you just created to the index for staging

– git commit -m “commit message”

● actually commit changes to the repository

– git log

http://git-scm.com/docs

09/23/16
CS360

Pacific University 11

Typical Workflow - Single User

– mkdir MyCoolProject.git; cd MyCoolProject.git

– git init

– ls -al

– geany .gitignore

● *.o

● test

– create test.c from the next slide

– gcc -c -o test.o test.c

– gcc -o test test.o

– git add test.c

– git commit -m “initial add of test.c”

– git log

http://git-scm.com/docs

One

09/23/16
CS360

Pacific University 12

test.c

#include <stdio.h>

int main()
{
 printf(“HELLO”);
 return 0;
}

09/23/16
CS360

Pacific University 13

Typical Workflow - Single User

– edit test.c to include printf(“-BYE\n”);

– gcc -c -o test.o test.c

– gcc -o test test.o

– git add .

– git status

– git commit -m “updated test.c to say BYE”

– git log

http://git-scm.com/docs

One

09/23/16
CS360

Pacific University 14

I need to revert!
● http://git-scm.com/book/en/Git-Basics-Undoing-Things
● git log --name-status

● git diff <commit hash> test.c

● git checkout <commit hash> test.c

● edit test.c

● git add .

● git commit

● git log

* two dashes precede a command line option of more than on character

http://stackoverflow.com/questions/215718/reset-or-revert-a-specific-file-to-a-specific-revision-using-git/373848
#373848

One

09/23/16
CS360

Pacific University 15

Branches
● Master

– Main line of development

– Often this is always kept buildable

● Branches

– Initially a copy of Master (not always…)

– Used to build a feature

– Used to fix a bug

– Not necessarily always buildable

– Not necessarily public

● Maybe local to a developer
– This is where your organization’s culture comes into play.

http://stackoverflow.com/questions/215718/reset-or-revert-a-specific-file-to-a-specific-revision-using-git/373848#373848
http://stackoverflow.com/questions/215718/reset-or-revert-a-specific-file-to-a-specific-revision-using-git/373848#373848

09/23/16
CS360

Pacific University 16

Typical Workflow
● Single user – bug fix! (or maybe feature add)

master

bug1827

git branch
git checkout

c

c

c

c

c

git merge

commit

http://git-scm.com/docs/git-merge

You might merge master into
bug1827 if the changes in
master are relevant to bug1827
but you are not done with bug1827.

Merges are non-destructive. Both
branches continue to exist and
can be used/edited/committed/branched.

https://www.atlassian.com/git/tutorials/merging-vs-rebasing/

09/23/16
CS360

Pacific University 17

Typical Workflow
● Single user – bug fix! (or maybe feature add)

– git branch bug1827

● create a branch to contain all the work for the bug fix

– git checkout bug1827

● start using that branch

– Do work (add/commit)

– git checkout master
to work on master again.

– git merge --no-ff bug1827

● replay the commits on bug1827 into master

– git log

– git branch -d bug1827

master

git branch
git checkout

c

c

c

c

c

git merge

commit

http://git-scm.com/docs/git-merge

bug1827

09/23/16
CS360

Pacific University 18

Typical Workflow
● Single user – bug fix! (or maybe feature add)

– git branch bug1827

– git checkout bug1827

– Add printf(“CS360\n”); to test.c

– git add .

– git commit -m “added CS360 line”

– git log

– git checkout master

– cat test.c

– git merge --no-ff bug1827

– git log

– git status

– git branch

– git branch -d bug1827 master

git branch
git checkout

c

c

c

c

c

git merge

commit

http://git-scm.com/docs/git-merge

bug1827

One

09/23/16
CS360

Pacific University 19

Typical Workflow
● Single user – bug fix! (or maybe feature add)

– git log --graph

– git blame test.c

– add printf(“Come back later”);

– cat test.c

– git stash

– cat test.c

– git stash list

– git stash show

– git stash apply

– cat test.c

– git add .

– git commit -m “committed stashed line”

– git log master

git branch
git checkout

c

c

c

c

c

git merge

commit

http://git-scm.com/docs/git-merge

bug1827

One

09/23/16
CS360

Pacific University 20

Typical Workflow
● Single user – bug fix! (or maybe feature add)

– git branch MERGE_CONFLICT

– git checkout MERGE_CONFLICT

– add ! to “come back later”

– git add .

– git commit -m “added bang”

– git checkout master

– add <> to “come back later”

– git add .

– git commit -m “added angles”

– git merge MERGE_CONFLICT

– edit test.c and choose which lines to keep

– git add .

– git commit -m “fixed merge conflict” master

git branch
git checkout

c

c

c

c

c

git merge

commit

http://git-scm.com/docs/git-merge

bug1827

One

09/23/16
CS360

Pacific University 21

Typical Workflow
● Single user – bug fix! (or maybe feature add)

– git log --graph

– git blame test.c

– git branch -d MERGE_CONFLICT

– git log --graph

master

git branch
git checkout

c

c

c

c

c

git merge

commit

http://git-scm.com/docs/git-merge

bug1827

One

09/23/16
CS360

Pacific University 22

More commands
● http://git-scm.com/docs

– git stash

– git status

● what files have uncommitted changes?

– git log

● show the commits and log messages

– git diff

● show the differences between local and committed files
● build a patch you can email to someone else

– git apply

● apply a patch to your working directory

– git blame

● who last changed each line of a file?

– git bisect

● try to determine when a property of your project changed

09/23/16
CS360

Pacific University 23

Workflow - Group
● http://nvie.com/posts/a-successful-git-branching-model/

● http://scottchacon.com/2011/08/31/github-flow.html

09/23/16
CS360

Pacific University 24

Typical Workflow - group
● Group of developers

– someone else: git init --bare --shared

– git clone address

● pull down code and setup origin

● git remote -v

– git branch bug1138

● only a local branch is created

– git checkout bug1138

– do work

– git add files / git commit

– git checkout master

– git merge --no-ff bug1138

– git push origin master

– git branch -d bug1138

repository
at address

your local
repository

bug1138

master

master

origin

09/23/16
CS360

Pacific University 25

Typical Workflow - group
● Group of developers

– setup the remote repos

– ssh zeus.cs.pacificu.edu

– mkdir gitTest.git; cd gitTest.git

– git init --bare --shared

repository
at address

your local
repository

bug1138

master

master

origin

Two

09/23/16
CS360

Pacific University 26

Typical Workflow - group
● Group of developers

– cd ~/Documents

– git clone
ssh://YOU@zeus.cs.pacificu.edu/home/YOU/gitTest.git

– cd gitTest

– git remote -v

– create test.c

– git add .

– git commit -m “initial commit”

– git push origin master

● in terminal Two: git log

One

09/23/16
CS360

Pacific University 27

Typical Workflow - group●

– git branch bug1138

– git checkout bug1138

– git branch

● in terminal Two: git branch

– edit test.c / git add files / git commit

– git log

● in terminal Two: git log

– git checkout master

– git merge --no-ff bug1138

– git branch

– git push origin master

● in terminal Two: get log --graph ; cat test.c

– git branch -d bug1138

One

09/23/16
CS360

Pacific University 28

Typical Workflow - group
git fetch

git log ..origin/master

git checkout origin/master

git checkout master

git merge origin/master

OR

git pull

– git pull performs lots of magic

– hard to fix things when magic fails.

Get changes from
origin
(remote repos)

09/23/16
CS360

Pacific University 29

Typical Workflow - group●

– mkdir ~/Documents/Fetch; cd ~/Documents/Fetch

– git clone
ssh://YOU@zeus.cs.pacificu.edu/home/YOU/gitTest.git

– cd gitTest

– git remote -v

– cat test.c

– git checkout -b FetchMe

– edit test.c / git add files / git commit -m “fetch”

– git log

– git checkout master

– git merge --no-ff FetchMe

– git branch

– git push origin master

– git branch -d FetchMe

Three

09/23/16
CS360

Pacific University 30

Typical Workflow - group●

– ls -al

– cat test.c

– git fetch

– git log ..origin/master

– git checkout origin/master

– git checkout master

– git merge origin/master

– edit test.c/add /commit -m “again”

– git push origin master

● in terminal Three:

– git pull
– cat test.c
– git log

One

09/23/16
CS360

Pacific University 31

Conflict
● edit/add/commit/push

● fetch/merge

● edit/add/commit/push (ERROR)
● fetch/merge (ERROR)
● edit file (resolve conflict)

● add/commit/push

<<<<<<< HEAD
BUY
=======
BYE
>>>>>>> origin/master

09/23/16
CS360

Pacific University 32

Tag

● git tag -a MarkTwo -m “this is a tag”

● git push --follow-tags

● git log --decorate=full

One

https://www.atlassian.com/git/tutorials/refs-and-the-reflog/

A tag is just one type of ref.

A ref is an alias for a particular commit.

Other types of refs are branch names and remotes.

Branches are easy in Git since they are just an
alias for a particular commit. (mostly)

09/23/16
CS360

Pacific University 33

Pull Request

● git checkout -b Request-Pull

● edit test.c

● git add .

● git commit -m "email"

● git checkout master

● git merge --no-ff Request-Pull

● git push origin master

● git request-pull MarkTwo
ssh://YOU@zeus.cs.pacificu.edu/home/YOU/git
Test.git master

One

09/23/16
CS360

Pacific University 34

Cherry Pick

● git cherry-pick <commit-hash>

● pick a commit from one branch and reapply that
one commit to another branch

– rather than merge all the commits on the branch at
the current location

Rebase
● Move a set of commits from one starting point to another

– “integrate changes from one branch to another”

– “The golden rule of git rebase is to never use it on public
branches.”

– “potentially catastrophic” for collaboration

https://www.atlassian.com/git/tutorials/merging-vs-rebasing/

https://medium.freecodecamp.com/git-rebase-and-the-golden-rule-explained-70715eccc372

Automatic
vs interactive

09/23/16
CS360

Pacific University 36

Typical Workflow - GitHub
● Individual

– Create repository at GitHub
● setup .gitignore and license.

– git clone git@github.com:USER/REPOS.git

● pull down code and setup origin

– git checkout -b bug1138

– do work

– git add files

– git commit …

– git checkout master

– git merge --no-ff bug1138

– git push origin master

09/23/16
CS360

Pacific University 37

Typical Workflow - GitHub
● Group of developers

– someone else creates a repository on GitHub (OTHERUSER)

– on your GitHub account, fork the repository

– git clone git@github.com:USER/repos.git

– git remote add upstream
git@github.com:OTHERUSER/FirstGitPractice.git

– git checkout -b bug1138

– do work/add/commit

– git push origin bug1138

● push to YOUR GitHub repository

– On GitHub, issue a Pull request!

– git fetch upstream

– git merge upstream/master

09/23/16
CS360

Pacific University 38

repository at // public or master
zeus/home/YOU/gitTest.git

master

your local
repository (#1)

master

your local repository
(#2)

master

1. git init --bare

2. git clone

3. git push

4. git clone

5. git push

6. git fetch

Last time

09/23/16
CS360

Pacific University 39

Forks and branches
● Correct usage: I used branches

– https://github.com/chaddcw/pullRequestTesting

– https://github.com/cs360f16/pullRequestTesting

● Horrible mess: I did not use branches :(

– https://github.com/chaddcw/pullRequestTesting

– https://github.com/cs360f14/ContactManager-Example-C

– https://github.com/cs360f16/ContactManager-Example-C

09/23/16
CS360

Pacific University 40

repository at
github.com/GROUP/REPOS

master

09/23/16
CS360

Pacific University 41

repository at
github.com/USER/REPOS

repository at
github.com/GROUP/REPOS

master
master

09/23/16
CS360

Pacific University 42

repository at
github.com/USER/REPOS

your local
repository

master

repository at
github.com/GROUP/REPOS

origin

master
master

git clone git@github.com:USER/REPOS.git

09/23/16
CS360

Pacific University 43

repository at
github.com/USER/REPOS

your local
repository

master

repository at
github.com/GROUP/REPOS

upstream

origin

master
master

git remote add upstream git@github.com:GROUP/REPOS.git

09/23/16
CS360

Pacific University 44

repository at
github.com/USER/REPOS

your local
repository

bug1138

master

repository at
github.com/GROUP/REPOS

upstream

master
originmaster

git branch
git checkout
do work
git add
git commit

09/23/16
CS360

Pacific University 45

repository at
github.com/USER/REPOS

your local
repository

bug1138

master

repository at
github.com/GROUP/REPOS

upstream

bug1138

master
originmaster

git push origin bug1138

09/23/16
CS360

Pacific University 46

repository at
github.com/USER/REPOS

your local
repository

bug1138

master

repository at
github.com/GROUP/REPOS

upstream bug1138

master
originmaster

use web browser to merge
 (if no conflicts)

09/23/16
CS360

Pacific University 47

repository at
github.com/USER/REPOS

your local
repository

bug1138

master

repository at
github.com/GROUP/REPOS

upstream bug1138

master
originmaster

use web browser to merge
 (if no conflicts)
 OR
git clone # to group owner’s local machine
git checkout -b pullreq_bug1138
git pull github.com/USER/REPOS bug1138
fix merge conflict
git add/git commit
git checkout master
git merge --no-ff pullreq_bug1138
git push origin master

09/23/16
CS360

Pacific University 48

repository at
github.com/USER/REPOS

your local
repository

bug1138

master

repository at
github.com/GROUP/REPOS

upstream bug1138

master
originmaster

git fetch upstream master
git merge upstream/master
git branch -d bug1138

09/23/16
CS360

Pacific University 49

repository at github.com/USER/REPOS

your local
repository

master

repository at
github.com/GROUP/REPOS

upstream bug1138

master
originmaster

git push origin master

git branch -d bug1138

09/23/16
CS360

Pacific University 50

Forks and branches
● Correct usage: I used branches

– https://github.com/chaddcw/pullRequestTesting

– https://github.com/cs360f16/pullRequestTesting

● Horrible mess: I did not use branches :(

– https://github.com/chaddcw/pullRequestTesting

– https://github.com/cs360f14/ContactManager-Example-C

– https://github.com/cs360f16/ContactManager-Example-C

09/23/16
CS360

Pacific University 51

https://github.com/cs360f14/FirstGitPractice/pull/2

09/23/16
CS360

Pacific University 52

Providers
● GitHub

– free ($$$), proprietary (not open)

– Go get a GitHub account and email me your username

● GitLab

– open source

– https://about.gitlab.com/

– https://gitlab.com/gitlab-org/gitlab-ce/

09/23/16
CS360

Pacific University 53

CI
● http://docs.travis-ci.com/user/getting-started/

● http://computer-vision-talks.com/articles/2014-02-23-using-
travis-ci/

09/23/16
CS360

Pacific University 54

Practice: DUE: Monday, noon

● Build a new local git repository in
~/Documents/CS360Practice_PUNetID

● Add the file test.c that prints Hello World

● Add the file test.txt that states “test.c prints Hello World”

● Add a .gitignore file that ignores *.o files and the
executable named test

● Commit all the files.

● Tag this revision as “INIT_COMMIT”

● Make a branch for a feature add: FA_Name

– add code to test.c that prints your name

– update test.txt to document your change

– commit all the files to the branch

09/23/16
CS360

Pacific University 55

Practice
● Switch back to master and make a branch for a feature add:

FA_Git

– add code to test.c that prints I love git

– update test.txt to document your change

– commit al lthe files to the branch

● Switch back to master

● Merge the FA_Name branch to master

● Tag this commit as ADDED_NAME

● Merge the FA_Git branch to master

– resolve any merge conflicts!

● Tag this commit as ADDED_GITLOVE

● Don’t delete the branches

09/23/16
CS360

Pacific University 56

Submit your practice!
● git log --decorate=full --name-status > punetid_git_log.txt

● cd ..

● tar czf CS360_Git_PUNetID.tar.gz CS360Practice_PUNetID

● scp CS360_Git_PUNetID.tar.gz YOU@zeus.cs.pacificu.edu:

● ssh YOU@zeus.cs.pacificu.edu

● submit cs360f16 CS360_Git_PUNetID.tar.gz

● Leave clear, useful commit messages.

● You can work on

– your own machine

– a lab machine

– ssh to zeus.cs.pacificu.edu
● note: zeus likely does not have a Documents folder!

commit 2a50c7dffddffb8c59356945bf77f881f78f4145 (HEAD -> refs/heads/master,
tag: refs/tags/ADDED_GITLOVE)

Merge: 68099dd 8bce123

 fixed merge conflicts

commit 68099dd6347be782f7af2c40c6fbe6bb64b3d32a (tag: refs/tags/ADDED_NAME)
Merge: f75bfa4 cb0828d

 Merge branch 'FA_NAME'

commit 8bce1233f6f9be1673a2ec840dcdd7a518a20633 (refs/heads/FA_Git)

 added I love git

M test.c
M test.txt

commit cb0828d1e773c40c81171666517c1402e03488e0 (refs/heads/FA_NAME)

 prints my name

M test.c
M test.txt

commit f75bfa4892eb8fc8dc534c71ccbd931a75c6bbeb (tag: refs/tags/INIT_COMMIT)

 initial commit

A .gitignore
A test.c
A test.txt

commit 7b78d4ede35747f2b108390c3d5a0c5178fef0b0 (HEAD -> refs/heads/master)
Merge: eccc9ea 007f0f5

 ADDED_GITLOVE

commit 007f0f548929096e0db791071e642bcd4d976247 (refs/heads/FA_git)

 ADDED_GITLOVE

M test.c
M test.txt

commit eccc9ea2246ab2f8abfb890cb99e0c04a17fd54d (refs/heads/FA_Name)

 ADDED_NAME

M test.c
M test.txt

commit 1e63953f391a17b389005de635c53c3263b68a5c

 INIT_COMMIT

A .gitignore
A test.c
A test.txt

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

