Homework \#8
CS 310 Fall 2014
Due Nov 21, 4:45pm pm
p 159
3.1 a , c
3.2 b, c

For 3.1 and 3.2 be sure to use the yields notation described in class.
3.8 b, c

For this question, write the algorithm! Don't build the full machine.
3.9 a (Hint: Proof by example)
3.15 b , c Read the answer to $3.15 / 3.16 \mathrm{a}$
3.16 b, d

Answer the above questions in a GoogleDoc.

Produce a PUNetID_cs310Hmwk8.tar.gz or .zip file containing the following JFLAP files and email me that file. None of the following TMs can use the S (stationary) extension in JFLAP.

Submit JFLAP files:

TM1_PUNetID.jff
Build a single tape, deterministic Turing Machine that accepts the language $\left\{w w^{R}\left|w \in\{0,1\}^{*} ;|w|>0\right\}\right.$

TM2_PUNetID.jff
Build a single tape, deterministic Turing Machine that accepts the language $\left\{A^{n} B^{n} C^{n} \mid n>0\right\}$
TM3_PUNetID.jff

Build a single tape, deterministic Turing Machine that accepts the language $\left\{A^{2 * n} B^{n} C^{3 * n} \mid n \geq 0\right\}$

BinAdd_PUNetID.jff

8-bit binary addition: Produce a 3-tape TM in JFLAP that will produce the sum on tape 3 of the 8 -bit binary numbers given on tape 1 and tape 2 . For example, if tape 1 contains: 00001111 (15) and tape 2 contains 00000011 (3) the sum on tape 3 should be: 00010010 (18). Don't worry about overflows. Each number on tape 1 and tape 2 will be exactly 8 bits long.

Bin2sComp_PUNetID.jff

8-bit binary complement: Produce a 2 tape TM that will produce the 2 s complement on tape 2 of the 8 -bit binary number on tape 1 . The 2 s complement is created by flipping each bit in the number and adding the value 1 to the resulting 8 -bit number. For example, the 2 s complement of 00001110 is 11110010

