CS310

Regular Expressions

Sections:1.3 page 63

September 15, 2014

NFA-DFA equivalence

• Th 1.39: Every NFA has an equivalent DFA

Corollary: A language is regular if and only if there exists an NFA that recognizes it Proof Idea:

If the language is regular, there exists a DFA that recognizes it. Each DFA is an NFA. Conversely, if there exists an NFA that recognizes the language, convert the NFA to a DFA.

Regular Expressions

- Use regular operations (Union, Concat, Kleene Star) and languages to create a regular expression R whose *value* is a language L(R)
 - not unique in general
 - order of operations: *, concat, \cup

$$R = 0*10*, L(R)=\{w \mid w \text{ has exactly one } 1\}$$

Regular Expressions

$$R = 0*10*, L(R)=\{w \mid \}$$

Regular Expression libraries

java.util.regex //java
import re # python
<regex.h> /*GNU C library*/

Geany

Search for:

✓ Use regular expressions

Use escape sequences

∑ is used to represent one symbol from the language

• {w | (w starts with 0 and has odd length) or (w starts with 1 and has even length) }

NFA?

How do we write this as a RE?

An expression R is Regular if:

$$R=a, a \in \Sigma$$

 $R=\epsilon$
 $R=\emptyset$
 $R=R_1 \cup R_2$, R_1 , R_2 are regular
 $R=R_1R_2$, R_1 , R_2 are regular
 $R=R_1^*$, R_1 is regular

- Theorem: A language is regular if and only if some regular expression describes it
 - Can be represented by an NFA

CS 310 – Fall 2014 Pacific University

Proof

• Lemma (1.55): If L is described by a regular expression R, then there exists an NFA that accepts it

Proof: For each type of regular expression, develop an NFA that accepts it.

```
R= a, a \in \Sigma

R= \epsilon

R=\emptyset

R= R<sub>1</sub> \cup R<sub>2</sub>, R<sub>1</sub>, R<sub>2</sub> are regular

R= R<sub>1</sub>R<sub>2</sub>, R<sub>1</sub>, R<sub>2</sub> are regular

R= R<sub>1</sub>*, R<sub>1</sub> is regular CS 310 - Fall 2014
```

Pacific University

aa* ∪ aba*b*

• {w | every odd position of w is 1 } NFA?

How do we write the Regular Expression?

• {w | w does not contain 110 } NFA?

How do we write the Regular Expression?

• {w| w contains even # 0s or exactly two 1s}

NFA?

How do we write the Regular Expression?

Proof

• Lemma: If a language is regular, it is described by a regular expression

• Proof Idea: If a language is regular, there exists a DFA that accepts it. We need to convert a DFA to a regular expression.

Steps:

- Convert DFA to GNFA
- Convert GNFA to Regular Expression
- GNFA?!

Generalized NFA

• NFA where the transitions $\overline{\text{may}}$ have regular expressions as labels rather than just Σ or ε

Reads *blocks* of symbols from the input

- Wait, why are we doing this?
 - to build up the regular expression slowly from the DFA

Special case of GNFA that we will use!

GNFA

- Start state transitions to every other state, no transitions to start state
- Single accept state, transition to it from every other state, no way out, Start state != accept state
- Except for the start and accept states, one arrow goes from every state to every other state (except the start state) and also from every state to itself.

•Add new start state with ε transitions to old start state and \varnothing to every other state

DFA to GNFA

Ø means you never take the transition

- •Add new accept state with εtransitions from old accept states
- •Replace multiple transitions in same direction with Union
- •If no transition exists between states, add transitions with Ø labels (just as placeholders)

Pacific University

GNFA to Regular Expression

• Each GNFA has at least 2 states (start and accept)

- To convert GNFA to Regular Expression:
 - GNFA has k states, k \geq 2

if k > 2 then
Produce a GNFA with k-1 states
repeat

GNFA to k-1 States

Pick any state in the machine that is not the start or

accept state and remove it

Fix up the transitions so the language remains the same

Example, NFA to Regular Expression

Example, NFA to Regular Expression

http://www.jflap.org/tutorial/fa/fa2re/index.html

CS 310 – Fall 2014 Pacific University

Practice

