#### CS310

## Converting NFA to DFA

Sections: 1.2 Page 54

September 10, 2014

### Quick Review

• 5 tuple (Q, $\Sigma$ ,  $\delta$ , q<sub>0</sub>,F)

$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

$$\delta: Q \times \Sigma_{\varepsilon} \to P(Q)$$



#### Convert NFA to DFA

- Two machines are equivalent if they recognize the same language
- Every NFA has an equivalent DFA (Th 1.39)  $\delta_{\textit{nfa}} : Q \times \Sigma_{\epsilon} \to P(Q)$
- The DFA will need to represent all subsets in *P*(Q) (how many?)
  - let's assume no  $\varepsilon$ -transitions initially

#### Convert NFA to DFA

• NFA is N =(Q,  $\sum$ ,  $\delta$ , q<sub>0</sub>, F)

• DFA is M=(Q`, 
$$\Sigma$$
`, $\delta$ `, $q_0$ `,F`)

$$Q' =$$

$$q_0 =$$

# Example (without $\varepsilon$ or $\delta_{dfa}$ )

DFA
$$Q'=\{\emptyset,$$

$$\sum'=\{a,b\}$$

$$Q_0'=$$

$$F'=\{$$

$$Q = \{q0,q1\}$$

$$\sum = \{a,b\} \quad \delta \quad a \quad b$$

$$Q_0 = q0 \quad q^0 \quad \{q0,q1\} \quad \{q1\}$$

$$F = \{q0\} \quad q^1 \quad \{\} \quad \{q0\}$$



## Let's define the $\delta_{\textit{dfa}}$ (still no $\epsilon$ )

$$\delta_{nfa}$$
:  $Q \times \Sigma_{\varepsilon} \to P(Q)$  in NFA  $\delta_{dfa}$ :  $Q' \times \Sigma \to Q'$  in DFA  $R \in Q'$ ,  $a \in \Sigma$   $\delta_{dfa}(R,a) =$ 

### Converting NFA to DFA - E Transitions

• Define start state and  $\delta_{dfa}$  to include all states that can be reached from a given state by 0 or

more ε transitions

### Conversion Example (with ٤)

DFA
$$Q'=\{\emptyset, \\ \Sigma'=\{a,b\} \\ Q_0'= \\ F'=\{ \\ \delta_{dfa}=$$

