CS310

Finite Automata

Sections: 1.1, 1.2 page 44

September 5, 2014

Quick Review

• Deterministic Finite Automata:

5-tuple (Q, \sum , δ , q₀, F)

Q: finite set of states

 Σ : alphabet (finite set)

δ: transition function (δ: Qx Σ ->Q)

q₀: start state

F: accepting states (subset of Q)

• Language A is *regular* if there exists a Finite Automata that recognizes A.

Regular Language

• Determinism?

- Regular language
 - Example?

– Example of non-regular language?

Regular Operations on Languages

- Given two languages, A,B, we can create new *languages* in a variety of ways:
 - What operations have we seen?

$$\Sigma=\{0,1\}$$
 A= $\{w|w \text{ ends in }1\}$ Examples B= $\{w|w \text{ begins with }00\}$

$$A \cup B =$$

$$AB =$$

$$A^* =$$

$$A \cap B =$$

$$\bar{A}$$
 =

Closure of Regular Languages

• A set is *closed* under some operation, Examples?

Regular operations

Proof

• Theorem 1.25: The class of regular languages is closed under the union operation.

If A and B are regular languages, so is $A \cup B$

What do we need to prove?

What does regular mean?

What does it mean for $A \cup B$ to be regular?

 $\Sigma=\{0,1\}$ Build the machine $A=\{w|\ w\ contains\ a\ 1\ in\ the\ penultimate\ position\}$

$$A = \{$$

Nondeterminism

• Nondeterministic Finite Automata:

NFA

• ε transitions

• Why would we ever use this?

CS 310 – Fall 2014
Pacific University

Example

- Does this NFA accept 010110?
- What sequence of states does it go through?

CS 310 – Fall 2014 Pacific University

$$\Sigma=\{0,1\}$$
 Build the machine $A=\{w|\ w\ contains\ a\ 1\ in\ the\ penultimate\ position\}$

$$A = \{$$

Proof

 Theorem 1.26: The class of regular languages is closed under the concatenation operation.

If A and B are regular languages, so is AB.

What do we need to prove?

What does regular mean?

What does it mean for AB to be regular?

Problems?

CS 310 – Fall 2014 Pacific University

Examples

Are A and B regular languages?

$$A = \{w \mid w = \text{begins with 1 ends with 0}\}$$

 $B = \{w \mid w = \text{begins with 0 ends with 1}\}$
 $s = 1000011$

CS 310 - Fall 2014

Pacific University