CS310

Finite Automata
 Sections:1.1, 1.2 page 44

September 5, 2014

Quick Review

- Deterministic Finite Automata:

5-tuple (Q, $\sum, \delta, \mathrm{q}_{0}, \mathrm{~F}$)
Q: finite set of states
\sum : alphabet (finite set)
$\delta:$ transition function ($\delta: \mathrm{Qx} \sum->\mathrm{Q}$)
q_{0} : start state
F : accepting states (subset of Q)

- Language A is regular if there exists a Finite Automata that recognizes A.

Regular Language

- Determinism?
- Regular language
- Example?
- Example of non-regular language?

Regular Operations on Languages

- Given two languages, A, B, we can create new languages in a variety of ways:
- What operations have we seen?

$\sum=\{0,1\} \quad A=\{w \mid$ w ends in 1$\} \quad$ Examples $B=\{w \mid w$ begins with 00$\}$

$A \cup B=$

$\mathrm{AB}=$
$\mathrm{A}^{*}=$
$A \cap B=$
$\bar{A}=$

Closure of Regular Languages

- A set is closed under some operation, Examples?
- Regular operations

Proof

- Theorem 1.25: The class of regular languages is closed under the union operation.

If A and B are regular languages, so is $\quad A \cup B$

What do we need to prove?
What does regular mean?
What does it mean for $A \cup B$ to be regular?

$\sum=\{0,1\} \quad$ Build the machine $\mathrm{A}=\{\mathrm{w} \mid \mathrm{w}$ contains a 1 in the penultimate position $\}$

$A=\{$

Nondeterminism

- Nondeterministic Finite Automata:

- ε transitions

NFA

- Why would we ever use this?

Example

- Does this NFA accept 010110?
- What sequence of states does it go through?

$\Sigma=\{0,1\} \quad$ Build the machine $\mathrm{A}=\{\mathrm{w} \mid \mathrm{w}$ contains a 1 in the penultimate position $\}$

$$
A=\{
$$

Proof

- Theorem 1.26: The class of regular languages is closed under the concatenation operation.

If A and B are regular languages, so is $A B$.

What do we need to prove?
What does regular mean?
What does it mean for AB to be regular?
Problems?

Examples

$A=\{$ north, northern $\} \quad B=\{$ east, west $\}$ $\mathrm{s}=$ northerneast is in AB

Are A and B regular languages?

$$
\begin{aligned}
& A=\{w \mid w=\text { begins with } 1 \text { ends with } 0\} \\
& B=\{w \mid w=\text { begins with } 0 \text { ends with } 1\} \\
& s=1000011
\end{aligned}
$$

