## CS310

### **Finite Automata**

Aug 29, 2014

# **Quick Review**

- Alphabet: ∑ = {a,b}
  ∑\*: Closure:
- String: any finite sequence of symbols from a given alphabet. |w| = length Concatenation/Prefix/Suffix/Reverse
- Language L over ∑ is a subset of ∑\*
  L= { x | rule about x}

**Concatenation/Union/Kleene Star** 

Recursive Definition

## Finite State Automata

• How can we reason about computation?

- Simple model of computation
  - Finite
  - State
  - Automata
  - Memory?

- Many Automata
- One automaton

# Example

# 

How would we represent Tic-tac-toe in C/C++?

How is this different than a finite state automata?

X always goes first.

How many possible board configurations (ignore the rules)?

How many possible *valid* tic-tac-toe configurations?

# Computation

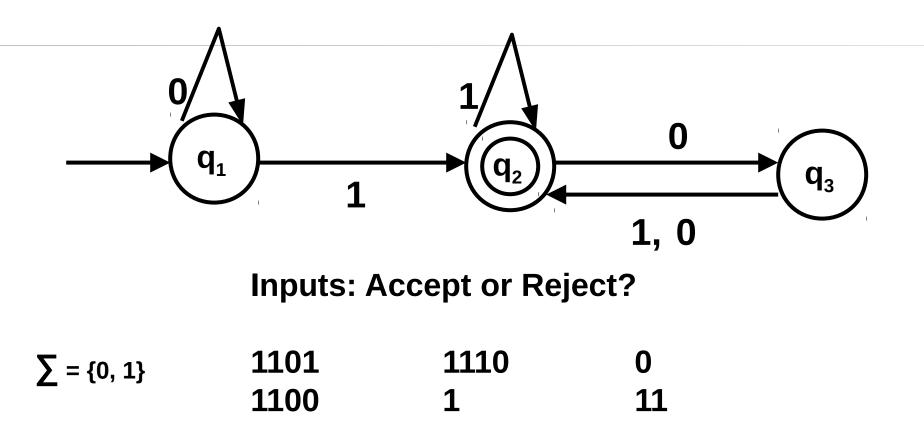
- Recognize patterns in data
- Build an automaton that can classify a string as part of a language or not
- Why?

#### Language:

 $L = \{ x \in \{0,1\}^* \mid x \text{ contains at least one 1 and the last 1 is followed by even number of 0s} \}$ 

T = { x | x represents a winning tic-tac-toe board} CS 310 - Fall 2014 Pacific University

#### **Deterministic Finite Automata**



Set of all strings (A) accepted by a machine (M) is the *Language of the Machine* M *recognizes* A or M *accepts* A

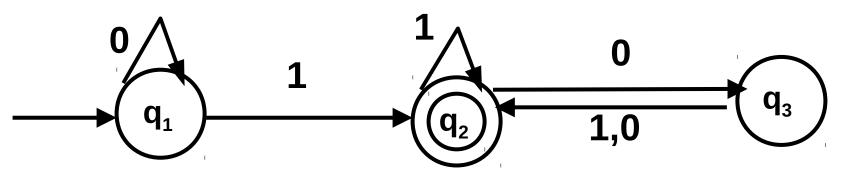
CS 310 – Fall 2014 Pacific

University

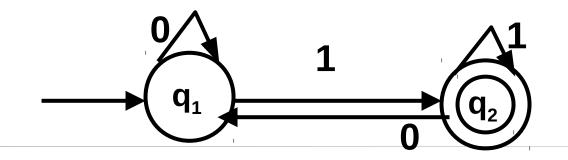
# Formal Definition

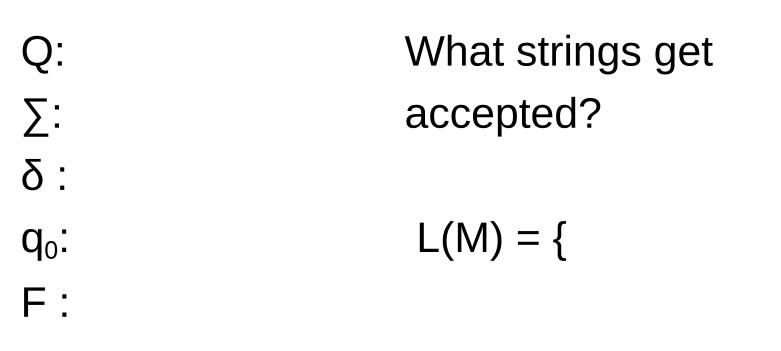
Deterministic Finite Automata:

- 5-tuple (Q,  $\sum$ ,  $\delta$ ,q<sub>0</sub>, F)
- Q: finite set of states
- $\Sigma$ : alphabet (finite set)
- δ : transition function (δ: Qx∑->Q)
- q<sub>0</sub>: start state
- F : accepting states (subset of Q)



- Q: finite set of states
- ∑: alphabet
- $\boldsymbol{\delta}$  : transition function
- q<sub>0</sub>: start state
- F : accepting states





# Designing a DFA

- Identify small pieces
  - alphabet, each state needs a transition for each symbol
  - finite memory, what crucial data does the machine look for?
  - can things get hopeless? do we need a trap?
  - where should the empty string be?
  - what is the transition into the accept state?
  - can you transition out of the accept state?
- Practice!

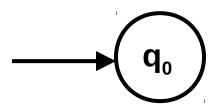
L(M) = { w | w =  $\varepsilon$  or w ends in 1}  $\Sigma = \{ 0, 1 \}$ 

Q: δ: q<sub>0</sub>: F:

### • $\sum = \{0,1\}, L(M)=\{w \mid odd \# of 1s\}$

Build a DFA to do math! L(M) = Accept sums that are multiples of 3 $\sum = \{ 0,1,2, < Reset > \}$ 

Keep a running total of input, modulo 3



### ∑ = {0,1}, L(M)={w | begins with 1, ends with 0}

### • $\sum = \{0,1\}, L(M)=\{w \mid contains \ 110\}$

CS 310 – Fall 2014 Pacific University

### • $\sum = \{0,1\}, L(M)=\{w \mid does not contain 110\}$

•  $\sum = \{0,1\}, L(M)=\{w \mid (01)^*\}$ 

### • $\sum = \{0,1\}, L(M)=\{w \mid w even \#0s, odd \#1s \}$

# ∑ = {0,1}, L(M)={w | w any string except 11 and 111 }

# Formal Definition of Computing

 Given a machine M= (Q, ∑, δ,q₀, F) and a string w=w₁w₂...w<sub>n</sub> over ∑, then M *accepts* w if there exists a sequence of states r₀,r₁...r<sub>n</sub> in Q such that:

$$-r_0 = q_{0:}r_0$$
 is the start state

- $-\delta$  (r<sub>i</sub>, w<sub>i+1</sub>) = r<sub>i+1</sub>,i=0,...,n-1 : legal transitions
- $-r_n \in F$ : stop in an accept state
- M **recognizes** A if A={w | M accepts w}
- Language A is *regular* if there exists a Finite Automaton that recognizes A.