CS310

P vs NP

the steel cage death match
How hard is a problem to solve?

Section 7.2
November 28, 2014

CS 310 — Fall 2014

Pacific University

Polynomial vs Exponential
Exponential: 3"

* Polynomial: n°

60000

4 Polynomial /
50000 4 Exponential /
40000 /
30000 /
20000 /
10000

O= 4— — — - ﬁéé/i —a———#
1 2 3 4 5 6 7 8 9 10

1.0E+20

1.0E+18

1.0E+16

1.0E+14

1.0E+12

1.0E+10

1.0E+08

1.0E+06

1.0E+04

1.0E+02

1.0E+00

— N"3
— 3N

1234567 8 910111213141516171819 2021 22 23 242526 27 28 29 30 31 32 33 34 35 36 37 38 39
N

Complexity relationships between models

 Theorem 7.8: let t(n) >= n, every t(n)
time multi-tape TM has an equivalent
O((t(n)?) time single-tape TM.

— polynomial difference

 Theorem 7.9: Every t(n) >= n time ND
single tape TM has an equivalent 2°tM)
time deterministic single tape TM

— exponential difference

CS 310 — Fall 2014
Pacific University

The class P

* P is the class of languages

* Problems in class P

CS 310 — Fall 2014

Pacific University

RELPRIME Sipser, p 261

PROOF The Fuclidean algorithm F is as follows.

L= "Onnput (z,y), where = and y are natural numbers in binary:
1. Repeat until y = 0:
2. Assign z «— x mod .
3. Exchange z and y.
4. Output z.”

Algorithm R solves RELPRIME, using I as a subroutine.

R = “On input (z,y), where z and y are natural numbers in binary:
1. Run Eon (z,y). |
2. Ifthe resultis 1, accept. Otherwise, reject.”

Facific university

CFG Parsing Sipser p 263

D = “On input w = w - - - Wy

1. Ifw =¢eand S — & isarule, accepi. ﬁ[[handle w = € case |
2. Fori=1ton: | examine each substring of length 1]
3. For each variable A:
4, Test whether A — b is a rule, where b = w;.
5. If so, place A in table(i,). |
6. Forl = 2ton: [! is the length of the substring]]
7. Fori=1ton —1+1: [iisthe start position of the substring |
8. Letj=1¢4+1—-1, [7 is the end position of the substring |
9, Fork=1itoj— 1: [k is the split position |
10. Foreachrule A — BC:
11. If table(i, k) contains B and table(k + 1,7) contains
C, put A in table(i, 7).
12. If Sisin table(1,n), accept. Otherwise, reject.”

Real Life

Problems in class P are usually
manageable on a real computer

— nK

— though k=100 may introduce some
practical problems

CS 310 — Fall 2014

Pacific University

The class NP

* NP is the class of languages

— Problems in class NP

CS 310 — Fall 2014

Pacific University

Verifier

A verifier of a language, A, is an algorithm, V,
such that

A={w |V accepts <w, c> for some string c}
where c is a certificate

Ic| is polynomial in terms of |w|

CS 310 — Fall 2014

Pacific University

Clique, Sipser p 268

PROOF The following is a verifier V' for CLIQUE.

V = “Oninput ({G, k), c):
1. Test whether cis a set of £k nodes in &7
2. Test whether G contains all edges connecting nodes in c.
3. If both pass, accept; otherwise, reject.”

ALTERNATIVE PROOF If you prefer to think of NP in terms of nonde-
terministic polynomial time Turing machines, you may prove this theorem by
giving one that decides CLIQUE. Observe the similarity between the two proofs.

N = “Oninput (G, k), where G is a graph:
1. Nondeterministically select a subset ¢ of k nodes of G
2. Test whether G contains all edges connecting nodes in ¢

3. Ifyes, accept; otherwise, reject.”

Subset-Sum Sipser p 269

prOOF The following is a verifier V for SUBS ET-SUM.

V = “Oninput {{S,t), c):
1. Test whether ¢ is a collection of numbers that sum to £,
2. Test whether S contains all the numbers in ¢.
3. If both pass, accept; otherwise, reject.”

ALTERNATIVE PROOF We can also prove this theorem by giving a nonde-
terministic polynomial time Turing machine for SUBSET-SUM as follows.

N = “On input (5, t):
1. Nondeterministically select a subset ¢ of the numbers in 5.
2. TTest whether ¢ is a collection of numbers that sum to £.
3. If the test passes, accept; otherwise, reject.”

CS 310 — Fall zu14

Pacific University

P vs NP

- PS NP
— unknown if the classes are unequal

* If P = NP, then all problems in NP can be
solved in polynomial time, if we are clever
enough to find the right algorithm

CS 310 — Fall 2014

Pacific University

NP-Complete

 NP-Completeness

— set of problems in NP whose complexity is
related to all problems in NP

— if an NP-Complete problem can be shown to
be in P, then P=NP

— boolean satisfiability, for example
— vertex-cover

— clique

— Hamilton Path

CS 310 — Fall 2014

Pacific University

NP-Hard p 298, 7.33

NP-Hard

NP-Complete

Complexity

NP-Hard

P=NP=
NP-Complete

P # NP

http://en.wikipedia.org/wiki/File:P_np np-complete np-hard.svg

Recent Work

Claim by Vinay Deolalikar (from HP Labs) that N |= NP

https://rjlipton.wordpress.com/2010/08/08/a-proof-that-p-is-not-equal-to-np/
— Link to Deolalikar's paper
— Much discussion

http://en.wikipedia.org/wiki/P_versus NP_problem#Claimed_solutions

https://rjlipton.wordpress.com/2010/08/12/fatal-flaws-in-deolalikars-proof/
— Fatal flaws?

CS 310 — Fall 2014
Pacific University

