
 CS 310 – Fall 2014
Pacific University

CS310

Complexity
Section 7.1

November 26, 2014

 CS 310 – Fall 2014
Pacific University

Running time
• A = {0K1K | k >=0 }

– how long (how many steps?) will it take a
single-tape TM to accept or reject a string?

• The running time
– input of length n
– worst case running time

• M is a “f(n) time TM”

 CS 310 – Fall 2014
Pacific University

Example

• f(n) = 5n3 + 4n2 + 6n + 1
– the goal here is to see how the running

time grows as n increases

– for large n, 5n3 dominates this equation
– coefficient 5 is immaterial
– we say f(n) = n3

 CS 310 – Fall 2014
Pacific University

Big Oh O()

• Asymptotic analysis
– estimate runtime of algorithm (or TM) on large

inputs
– only look at highest order term
– allows us to compare runtime of two

algorithms

 CS 310 – Fall 2014
Pacific University

Definition: Big Oh

• f, g are functions: f,g: N → R+

f(n) = O(g(n)) if positive ints c and n0 exist
such that for every int n >= n0

f(n) <= c*g(n)

 g(n) is an asymptotic upper bound for f(n)
 some constant multiple of g(n) eventually

dominates f(n)

• R+: set of non-negative real numbers

 CS 310 – Fall 2014
Pacific University

Example

• f(n) = 5n3 + 2n2 + 22n + 6
• O(f(n)) = n3

• let c = 6 and n0 = 10

• 5n3 + 2n2 + 22n + 6 <= 6n3
– for every n >= n0

• O(f(n)) = n4 as well, but we want the
tightest upper bound

 CS 310 – Fall 2014
Pacific University

Logarithms

x = log
2
n 2x = n

log
b
n = log

2
n / log

2
 b

f(n) = O(log n)

 CS 310 – Fall 2014
Pacific University

Example

• f(n) = 3n log2 n + 5nlog2 (log2 n) + 2

 f(n) = O(g(n)) = ?
 Since log2 n <= n then

log2 (log2 n) <= log2 (n)

 so f(n) = O(n log2 n)

 CS 310 – Fall 2014
Pacific University

Analyzing Algorithms

• A = {0k1k | k>=0}
on input of length n:

1) scan, reject if 0 found to right of a 1
2) if both 0’s and 1’s remain, scan,
cross off single 0, single 1

 3) if 0’s remain after 1’s crossed off or
conversely, reject. otherwise accept.

 CS 310 – Fall 2014
Pacific University

Analysis
• Step 1: scan, verify: n steps forward, n

steps back: 2n steps so O(n)

• Step 2: scan, cross off 0 and 1 each
scan. Each scan uses O(n) steps, n/2
scans at most, so O(n2)

• Step 3: Scan, accept or reject O(n)
• Total: O(n) + O(n2) + O(n)

– O(n2)

 CS 310 – Fall 2014
Pacific University

Algorithm

• If we had a two tape TM, could we do
this in O(n)?
– linear time?

 CS 310 – Fall 2014
Pacific University

Complexity relationships between models

• Theorem 7.8: let t(n) >= n, every t(n)
time multitape TM has an equivalent
O((t(n)2) time single-tape TM.

• Theorem 7.9: Every t(n) >= n time ND
single tape TM has an equivalent 2O(t(n))
time deterministic single tape TM

