CS310

Reducibility

Chapter 5.1

November 26, 2012

Pacific University

Reduction

- Convert one problem (A) into a second problem (B)
- solution to B can be used to solve A
- If B is decidable, so is A
- If A is undecidable, so is B
- Is Z undecidable? Prove it is reducible to Y , which has previously been shown to be undecidable

Halting Problem

$\operatorname{HALT}_{\mathrm{TM}}=\{<\mathrm{M}, \mathrm{w}>\mid \mathrm{M}$ is a TM and M halts on input w$\}$

undecidable?

- Proof: Assume $\mathrm{HALT}_{\mathrm{TM}}$ is decidable, show that if true, A_{TM} is decidable.
- Contradiction!
- A_{TM} is reducible to $\mathrm{HALT}_{\text {тм }}$

Proof

- Assume TM R decides HALT TM
- Use R to build TM S that decides $\mathrm{A}_{\text {TM }}$
- S: Run TM R on $<\mathrm{M}$, w $>$
- If R rejects, reject
- If R accepts, run M on w until M halts
- If M accepts, accept, if M rejects, reject
- If R decides $\operatorname{HALT}_{\mathrm{TM}}$ then A_{TM} is decidable
- A_{TM} is reducible to $\mathrm{HALT}_{\text {TM }}$

TM Equality

- $\mathrm{EQ}_{\mathrm{TM}}=\left\{<\mathrm{M}_{1}, \mathrm{M}_{2}>\mid \mathrm{M}_{1}\right.$ and M_{2} are TMs and $\left.\mathrm{L}\left(\mathrm{M}_{1}\right)=\mathrm{L}\left(\mathrm{M}_{2}\right)\right\}$
- $\mathrm{E}_{\mathrm{TM}}=\{<\mathrm{M}\rangle \mid \mathrm{M}$ is a TM and $\left.\mathrm{L}(\mathrm{M})=\varnothing\right\}$
- undecidable (see TH 5.2 p 189)
- Show that if $\mathrm{EQ}_{\mathrm{TM}}$ were decidable, so would be $\mathrm{E}_{\text {тм }}$
- Reduction from E_{TM} to $\mathrm{EQ}_{\mathrm{TM}}$
$-\mathrm{E}_{\mathrm{TM}}$ is a special case of $\mathrm{EQ}_{\text {TM }}$ where $\mathrm{L}\left(\mathrm{M}_{\mathrm{i}}\right)=\varnothing$

Computation Histories

- List of configurations a TM goes through
- Configuration
- Current State
- Current Tape State
- Read/Write Head location
- Finite sequence that ends in accept or reject

Linear Bounded Automaton

- Cannot move read/write head off portion of tape with original input
- May have larger tape alphabet than input alphabet
- Allows for larger memory than just number of tape positions
- Increase by constant factor

Proof

- $\mathrm{A}_{\mathrm{LbA}}=\{<\mathrm{M}, \mathrm{w}>\mid \mathrm{M}$ is an LBA that accepts string w\}
- Decidable
- Proof using computation histories
- LBA with q states, g symbols in tape alphabet, input tape of length n
- How many possible configurations are there?
- ???

