CS310

Decidability Section 4.1/4.2

November 14, 2014

CS 310 – Fall 2012 Pacific University

Decidability

- "the power of algorithms to solve problems." p
 165
- What are the limits of algorithmic solvability?
- How can we tell if two Regular Expressions define the same language?
 - or, can we?
- A language is decidable if some TM decides it

Decidable

- Take a question
 - turn it into a language where answer is yes
 - accept: yes
 - reject: no
 - encode in a string
 - build TM
 - If always halts: decidable!

Decidable? Recognizable?

- { x | x is prime, y is prime, x is a substring of y, x ∈{0..9}⁺, y ∈{0..9}⁺}
- { x | x is prime, y is prime, x is a proper substring of y, x ∈{0..9}⁺, y ∈{0..9}⁺}
- { y | x is prime, y is prime, x is a proper substring of y, x ∈{0..9}⁺, y ∈{0..9}⁺}

CS 310 – Fall 2012 Pacific University

Decidability

- Acceptance Problem (DFA): Does a given DFA, B, accept a given string w?
- In terms of languages (because we have defined computation as accept/reject a language):
 - $-A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts } w \}$
 - For ALL input pairs <B, w> can a single TM be constructed that will decide <B,w> $\in A_{DFA}$
 - can we build one TM that will work for all DFAs?
 - is there an *algorithmic* way to solve this problem?

Theorem ecidable

- A_{DFA} is decidable
 - given <B, w> we can decide if <B, w> ∈ A_{DFA} or <B, w> ∉ A_{DFA}
- Proof Idea:
 - Use a TM, M, to simulate B with input w
 - Keep track of current state and current position on the input string
 - Update according to the DFA's $\boldsymbol{\delta}$

Also...

- A_{NFA} and A_{Regular Expression} are also decidable
 - why?

Emptiness testing

 Does a finite automata accept any strings at all?

 $- E_{DFA} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$

- Theorem: E_{DFA} is decidable
- Proof Idea:

– is it possible to reach an accept state from q_0 ?

Equivalence testing

Do two DFAs recognize the same language?

 $-EQ_{DFA} = \{ <A, B > | A and B are DFAs and L(A) = L(B) \}$

- Theorem: $\mathsf{EQ}_{\mathsf{DFA}}$ is decidable

– Proof:

Question

 Can we tell if two Regular Expressions define the same

language?

-why or why not?

CFGs

- A_{CFG} = {<G, w> | G is a CFG that generates w}
- A_{CFG} is decidable
- Could enumerate all strings produced by G: could be infinite, though
- Proof Idea

Equivalence of CFGs

- EQ_{CFG} = {<G, H> | G and H are CFL and L(G) = L(H)}
 - not decidable