CS310

Decidability Section 4.1/4.2

November 14, 2014

Pacific University

Decidability

- "the power of algorithms to solve problems." p 165
-What are the limits of algorithmic solvability?
- How can we tell if two Regular Expressions define the same language?
- or, can we?
- A language is decidable if some TM decides it

Decidable

- Take a question
- turn it into a language where answer is yes
- accept: yes
- reject: no
- encode in a string
- build TM
- If always halts: decidable!

Decidable? Recognizable?

- $\{x \mid x$ is prime, y is prime, x is a substring of $\left.y, x \in\{0 . .9\}^{+}, y \in\{0 . .9\}^{+}\right\}$
- $\{x \mid x$ is prime, y is prime, x is a proper substring of $\left.y, x \in\{0 . .9\}^{+}, y \in\{0 . .9\}^{+}\right\}$
- $\{y \mid x$ is prime, y is prime, x is a proper substring of $\left.y, x \in\{0 . .9\}^{+}, y \in\{0 . .9\}^{+}\right\}$

Decidability

- Acceptance Problem (DFA): Does a given DFA, B, accept a given string w ?
- In terms of languages (because we have defined computation as accept/reject a language):
$-A_{D F A}=\{\langle B, w\rangle \mid B$ is a DFA that accepts $w\}$
- For ALL input pairs $<B, w>$ can a single TM be constructed that will decide $\langle B, w\rangle \in A_{\text {DFA }}$
- can we build one TM that will work for all DFAs?
- is there an algorithmic way to solve this problem?

Theorem

- $A_{\text {DFA }}$ is decidable
- given <B, w> we can decide if $<B, w>\in A_{D F A}$ or $<B$, $w>\notin A_{\text {DFA }}$
- Proof Idea:
- Use a TM, M, to simulate B with input w
- Keep track of current state and current position on the input string
- Update according to the DFA's δ

Also...

- $A_{\text {NFA }}$ and $A_{\text {Regular Expression }}$ are also decidable
- why?

Emptiness testing

- Does a finite automata accept any strings at all?

$$
-E_{D F A}=\{\langle A\rangle \mid A \text { is a DFA and } L(A)=\varnothing\}
$$

- Theorem: $\mathrm{E}_{\mathrm{DFA}}$ is decidable
- Proof Idea:
- is it possible to reach an accept state from q_{0} ?

Equivalence testing

- Do two DFAs recognize the same language?
$-E Q_{\text {DFA }}=\{<A, B>\mid A$ and B are DFAs and $L(A)=L(B)\}$
- Theorem: $E Q_{\text {DFA }}$ is decidable
- Proof:

Question

- Can we tell if two Regular Expressions define the same

language?

- why or why not?

CFGs

- $A_{C F G}=\{<G, w>\mid G$ is a CFG that generates w\}
- $\mathrm{A}_{\mathrm{CFG}}$ is decidable
- Could enumerate all strings produced by G: could be infinite, though
- Proof Idea

Equivalence of CFGs

- $E Q_{\text {CFG }}=\{<G, H>\mid G$ and H are CFL and $L(G)=$ L(H)
- not decidable

