CS310

Variants of Turing Machines

Section 3.2

November 10, 2014

Pacific University

Formal Definition

- 7 Tuple:

Pacific University

Multiple Tape Turing Machine

- For k tapes
- input string is on tape 1
- other tapes start out blank
- Change

$$
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}
$$

Example

- Construct a two-tape Turing Machine to accept $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$
- Conceptually what do we want to do?

Theorem

- Every multi-tape Turing Machine has an equivalent single tape machine
- adding extra tapes does not add power to the Turing Machine
- Proof Idea: Simulate multi-tape TM as

Nondeterministic TM

- Often easier to design/understand
- Design a TM to accept strings containing a c that is either preceded or followed by $a b$
- We can think of this computation as a tree
- each branch from a node (state) represents one nondeterministic decision (for a single input character)

Theorem

- Every nondeterministic TM, N, has an equivalent deterministic TM, D
- Proof Idea:
- use a 3 tape TM (we can convert this to a one tape TM later)
- tape 1: input tape (read-only)
- tape 2: simulation input/output tape of the current branch of the n-d TM
- tape 3: address tape (based on the tree) to keep track of where we are in the computation

Practice

$\left\{a^{i b j} c^{k} \mid i>j>0 ; k=2 i\right\}$
$\left\{w^{\mathrm{R}}| | w^{\mathrm{R}} \mid\right.$ is odd,$\left.w \in\{0,1\}^{*}\right\}$
$\left\{w w \mid w \in\{0,1\}^{*}\right\}$
the complement of $\left\{w^{R} \mid w \in\{0,1\}^{*}\right\}$
multiplication of two numbers in base 1 : 11111 * 11 produces 1111111111

