CS310 Turing Machines Section 3.1

November 3, 2014

Alan Turing

- English mathematician
- Helped break German codes during WWII
- Helped formalize the concept of an algorithm – Represented by the Turing Machine
 - A TM is a precise way to discuss/reason about algorithms
 - Data: any data can be encoded as a string of 0s and 1s
 CS 310 - Fall 2014

Pacific University

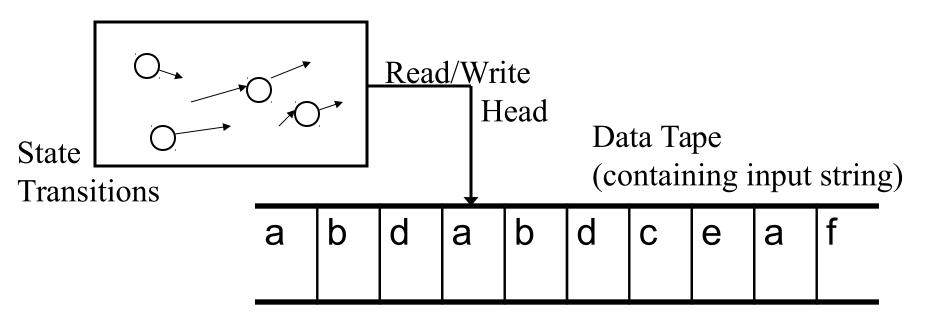
Turing Machines

Similar to Finite Automata

- Differences
 - unlimited and unrestricted memory
- more accurate model of modern computer
- Problems that cannot be solved by a Turing Machine cannot be solved by a "real" digital computer
 - theoretical limits of computation

Turing Machine State Transitions plus infinite "data tape"

- read/write tape
- move around on tape



Notes

- Deterministic
- May make multiple passes over input

- Reject string by entering reject configuration or looping forever
 - hard to tell if a machine will loop forever
 - Halting problem

Differences with FA

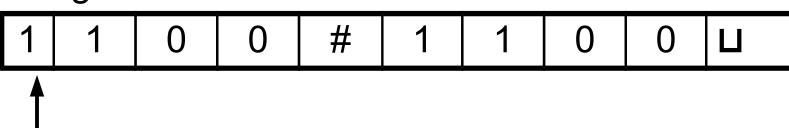
• TM can read and write from tape

- Read/Write head can move left or right

 One step
 - must move
- TM tape is infinite to the right*
- TM accept and reject states take effect *immediately*

• L = { w#w | w \in { 0,1} * }

- Example
- Conceptually, we want to do what?
- input string:



Is L regular? context free?

Formal Definition (7 Tuple) • {Q, Σ , Γ , δ , q_0 , q_{accept} , q_{reject} }

Q:

Σ: blank character: ⊔

Γ:

δ:

 $\mathbf{q}_{\text{accept}} \neq \mathbf{q}_{\text{reject}}$

Operation

- Start configuration of M on input w is:q₀w
- Yield: $uaq_i bv$ yields $uq_n acv$ if $\delta(q_i, b) \rightarrow (q_n, c, L)$
- Accepting and Rejecting configurations are called *halting* configurations
 - the TM stops operating
 - otherwise, loops forever

Definition of Computing

- A TM, M, accepts a string, w, if there exists a sequence of configurations, C₀,C₁,...,C_n, such that:
 - $-c_0$ is the start configuration
 - $-c_i$ yields c_{i+1} for all i
 - $-c_n$ is an accept configuration
- The set of strings M accepts is L(M) – language of M

Definitions

- Turing recognizable
 - a language is Turing Recognizable if some TM recognizes it (accepts all valid strings)

- Turing decidable
 - a language is Turing decidable if some TM decides it
 - halts on all inputs
 - hard to tell if a looping machine is really going to reject the string
 - CS 310 Fall 2014

Pacific University

Church-Turing Thesis

- Turing Model is and always will be the most powerful model
 - it can simulate other models: D/NFA, PDA
 - variations do not provide more power
 - extra tape
 - nondeterminism
 - extra read/write heads
 - (but may make a TM easier to build)

Build a Machine!

- $L = \{ \Sigma \Sigma 0 \Sigma \} \Sigma = \{ 0, 1 \}$
- $L = \{a^n b^n | n \ge 0 \}$
- $L = \{a^n b^n c^n \mid n \ge 0 \}$

- Often, you write an algorithm for the machine rather than a set of transitions.
- $L = \{a^n b^m c^p \mid n, m, p > 0, p = n m \}$
- L = { w | |w| is even }, Σ = {1}
- L = { w | |w| a power of 2 }, Σ = {1}
- L = { w | |w| is prime }, Σ = {1}

Transducer

- TM produces output (to the tape)
- A function F with domain D is Turing-Computable if there exists a TM, M, such that the configuration q_0w yields q_{accept} , F(w) for all $w \in D$.
 - x = number in base 1, F(x) = 2xx = 111 2x = 111111

Transducer

- x, y positive integers in base 1
- design TM that computes x+y