CS310

Strings, String Operators, and Languages Sections:

August 27, 2014

CS 310 – Fall 2014 Pacific University

Quick Review

• Sets (Union, Intersection, [Proper] Subset)

{ n | rule about n} Cross Product/Power Set

- Sequences/Tuples
- Functions
 - $f: D \rightarrow R$
- Relation

 $f: A_1 \times A_2 \times ... \times A_n \rightarrow \{\text{TRUE}, \text{FALSE}\}$ Equivalence Relations: 3 conditions

Strings

- Alphabet:
- String:

3

length of w: $|\varepsilon| = |w| =$

 Strings are building blocks of computer science

strings can represent: data sets (DNA), source code, files...

Pacific University

String Operations

• Closure (\sum^*) :

 $\sum = \{a, b\} \quad \sum^* = \{$

Concatenations

x^{k} is k copies of x concatenated $x^{2} =$

String Operations

• Prefix/Suffix

Reverse

CS 310 – Fall 2014 Pacific University

Language

- Complement of a language L over $\boldsymbol{\Sigma}$
- Concatenation of languages

• Union of languages

L1 =
$$\{0\}^*$$

L2 = $\{1\}^*$
what is in L₁ U L₂?
what is in L₁L₂?

• Kleene Star

L = { x є { a, b}* | |x| is odd} What does L contain: {

$$\mathsf{L}^{\star} = \{ \varepsilon, \quad , \quad , \quad$$

"

Recursive Definitions

```
Define L over \sum = \{0,1\} as
1. \varepsilon \in L
2. If x \varepsilon L then 0x1 \varepsilon L
What is in L? L= { }
```

- Can we prove that {ε,01,0011,000111,...} is equivalent to {0ⁱ1ⁱ | i>=0}?
- Show L is subset of $\{0^i1^i \mid i \ge 0\}$ and the reverse

• For x,y $\in \sum^*$, show (xy)^R = y^RX^R