CS310

Strings, String Operators, and Languages Sections:

August 27, 2014

Pacific University

Quick Review

- Sets (Union, Intersection, [Proper] Subset)
\{ n | rule about n \}
Cross Product/Power Set
- Sequences/Tuples
- Functions
$f: D \rightarrow R$
- Relation
$f: \mathrm{A}_{1} \times \mathrm{A}_{2} \times \ldots \times \mathrm{A}_{n} \rightarrow\{$ TRUE, FALSE $\}$
Equivalence Relations: 3 conditions

Strings

- Alphabet:
- String:
ε
length of w:
$|\varepsilon|=\quad|w|=$
- Strings are building blocks of computer science
strings can represent: data sets (DNA), source code, files...

String Operations

- Closure (Σ^{\star}):

$$
\Sigma=\{a, b\} \quad \Sigma^{*}=\{
$$

- Concatenations
x^{k} is k copies of x concatenated
$\mathrm{X}^{2}=$

String Operations

- Prefix/Suffix
- Reverse

Languages

- Language

$$
\begin{aligned}
L & =\left\{x \in\{a, b\}^{*}| | x \mid \text { is even }\right\} \\
& =\{\varepsilon, a a, a b,
\end{aligned}
$$

- Complement of a language Lover Σ
- Concatenation of languages

Languages

- Union of languages
$\mathrm{L} 1=\{0\}^{*}$
$\mathrm{~L} 2=\{1\}^{\star}$
what is in $L_{1} \mathrm{UL}_{2}$?
what is in $L_{1} L_{2}$?

Languages

- Kleene Star
$L=\left\{x \in\{a, b\}^{*}| | x \mid\right.$ is odd $\}$
What does L contain:
\{
\}
$L^{*}=\{\varepsilon, \quad, \quad, \quad\}$

Languages

- Recursive Definitions

Define L over $\Sigma=\{0,1\}$ as

1. $\varepsilon \in L$
2. If $x \in L$ then $0 x 1 \in L$

What is in L ? $L=\{\quad\}$

- Can we prove that $\{\varepsilon, 01,0011,000111, \ldots\}$ is equivalent to $\left\{0^{i} 1^{i} \mid i>=0\right\}$?
- Show L is subset of $\left\{0^{\circ} 1^{i} \mid i>=0\right\}$ and the reverse

Proof

- For $\mathrm{x}, \mathrm{y} \in \sum^{*}$, show (xy)R $=$ yRxR

