
CS 310 – Fall 2014
Pacific University

CS310

Chomsky Normal Form
Section: 2.1 page 106

Pushdown Automata
Sections: 2.2

page 109

October 10, 2014

CS 310 – Fall 2014
Pacific University

Quick Review

• (CFG) 4-tuple (V, ∑, R, S)
– V finite set of variables

– ∑ finite set of terminals

– R set of rules of form:
• variable -> (string of variables and terminals)

– S ∈ V, start variable

– L(G) = { w ∈ ∑* | S -*> w}
• w is in ∑* and can be derived from S

Example
A -> 0A1

A -> B

B -> #

A

A

A

0 0 # 1 1

B

CS 310 – Fall 2014
Pacific University

Chomsky Normal Form

• CNF presents a grammar in a standard,
simplified form:

A-> BC

A -> a

S -> ε
– Where A,B,C are variables and B and C are not

the start variable
– a is a terminal

– The rule S -> ε is allowed so the language can
generate the empty string (optional)

CS 310 – Fall 2014
Pacific University

CNF Benefits

• Easier to prove statements about CFG’s
when in CNF

• Any CFG can be converted to CNF
• Remove productions:

A -> ε to empty

A -> B Unit rule

A -> s, s contains a terminal and |s| > 1

A -> s, |s| > 2

 s ∈ { V U ∑ }*

CS 310 – Fall 2014
Pacific University

Removing A -> ε

S -> UAV

A -> ε

• A variable A is nullable if A-*> ε

Find all nullable variables
Remove all ε transitions

 If T -> X
1
AX

2
 and A is nullable

 then add T -> X
1
X

2

CS 310 – Fall 2014
Pacific University

Example

S -> TU

T -> AB

A -> aA | ε

B -> bB | ε

U -> ccA | B

Nullable variables?
Productions removed?
Productions added?

CS 310 – Fall 2014
Pacific University

Removing A -> B (Unit Productions)

A-> B
B-> s

 s ∈ { V U ∑ }*
• A variable B is A-derivable if A-*>B

Find all A-derivable variables for each A
Remove all unit transitions

If B -> s and B is A-derivable
then add A -> s

CS 310 – Fall 2014
Pacific University

Example

S -> TU | T | U B -> bB | b

T -> AB | A | B U -> ccA | B | cc

A -> aA | a

S-derivable:
T-derivable:
U-derivable:
Productions removed:
Productions added:

CS 310 – Fall 2014
Pacific University

Remove A-> S1aS2

A-> S1aS2

a ∈ ∑, S1 and S2 are strings, at least one is
not empty

Create
Xa -> a

A-> S1XaS2

Then fix up A-> S1XaS2

– why? what rule is violated?
– how?

CS 310 – Fall 2014
Pacific University

Remove A-> S1XaS2

A -> S1XaS2

A ->

CS 310 – Fall 2014
Pacific University

Put in to CNFS → ASA | aB
A → B | S
B → b | ε

CS 310 – Fall 2014
Pacific University

Pushdown Automata

• Machine to recognize Context Free Language
• Similar to an NFA, but contains a stack

– An FA with memory added (LIFO!)

FA Pushdown Automata

aabba aabba
x
y

State
Control

Stack

CS 310 – Fall 2014
Pacific University

Pushdown Automata

• PDA may be deterministic or
nondeterministic

– Not equivalent! (unlike DFA & NFA)
– NPDA equivalent to CFG.

• each process has its own stack

• Define certain (state, input) to push data
onto the stack

• Combine input string with stack data for δ

CS 310 – Fall 2014
Pacific University

PDA

CS 310 – Fall 2014
Pacific University

Pushdown Automata (Informally)

 S -> X

 X -> (X) | XX | ε

What language? Regular?

How would you solve this problem using a
stack (forget the Pushdown Automata)?

CS 310 – Fall 2014
Pacific University

Formal Definition

• 6-tuple!
– Q: set of states

– Σ: input alphabet

– Г: stack alphabet

– δ: Q x Σε x Гε -> P(Q x Гε)

• input and top of stack to transition

• Do not read or write from stack: Гε = ε

– q0 ∈ Q: start state

– F ⊆ Q: set of accept states

CS 310 – Fall 2014
Pacific University

Example (Non-deterministic)

• { 0n1nn | n > 0 }

ø

ø

{(q4, ε)}

ø

ø

ø

ø

ø

ø

ø

ø

ø

ø {(q2,$)}øø

øø

øø

{(q2,0)}ø

øø

0 ε$$ εε$

øøøq4

ø{(q3, ε)}øq3

ø{(q3, ε)}øq2

øøøq1

0 0 Stack

ε10Input

CS 310 – Fall 2014
Pacific University

Practice

• { wwR | w ∈ {0, 1}* }

hint: push symbols onto the stack, at each
point guess that the middle of the string

has been reached and begin popping from
stack

CS 310 – Fall 2014
Pacific University

Examples
• Build a PDA for:

{w | w∊{0,1}*}

{w#wR | w∊{0,1}*}

{0n1n ; n >= 0}

{w | w ∊{0,1}*; w contains an equal number of
0s and 1s}
{w | w ∊{0,1}*; w contains more 1s than 0s}

{w | w ∊{0,1}*; w contains an unequal number
of 1s and 0s}

{wy| w ∊{0,1}*, y ∊{0,1}*; y is the string w
with every character flipped (0->1, 1->0)}

CS 310 – Fall 2014
Pacific University

• Read p 119 – 122 for next time!

