CS310

Chomsky Normal Form Section: 2.1 page 106 Pushdown Automata Sections: 2.2 page 109

October 10, 2014

Pacific University

Quick Review

- (CFG) 4-tuple (V, $\Sigma, \mathrm{R}, \mathrm{S}$)
-V finite set of variables
$-\sum$ finite set of terminals
-R set of rules of form:
- variable $->$ (string of variables and terminals)
$-S \in V$, start variable
$-\mathrm{L}(\mathrm{G})=\left\{\mathrm{w} \in \sum^{*} \mid \mathrm{S}-*>\mathrm{w}\right\}$
- w is in \sum^{*} and can be derived from S

Chomsky Normal Form

- CNF presents a grammar in a standard, simplified form:
$\mathrm{A} \rightarrow \mathrm{BC}$
$\mathrm{A} \rightarrow a$
S \rightarrow - ε
- Where A,B,C are variables and B and C are not the start variable
$-a$ is a terminal
- The rule $\mathrm{S}->\varepsilon$ is allowed so the language can generate the empty string (optional)

CNF Benefits

- Easier to prove statements about CFG's when in CNF
- Any CFG can be converted to CNF
- Remove productions:

A $\rightarrow \boldsymbol{\varepsilon} \quad$ to empty
A $->$ B Unit rule
A $->\mathrm{s}, \mathrm{s}$ contains a terminal and $|\mathrm{s}|>1$
A $\rightarrow \mathrm{s},|\mathrm{s}|>2$
$\mathrm{s} \in\left\{\mathrm{VU} \sum\right\}^{*}$

Removing A -> $\boldsymbol{\varepsilon}$

$$
\begin{aligned}
& \mathrm{S}->\mathrm{UAV} \\
& \mathrm{~A} \rightarrow \varepsilon
\end{aligned}
$$

- A variable A is nullable if A-*> $\boldsymbol{\varepsilon}$

Find all nullable variables
Remove all $\boldsymbol{\varepsilon}$ transitions

If $T \rightarrow X_{1} A X_{2}$ and A is nullable
then add $\mathrm{T} \rightarrow \mathrm{X}_{1} \mathrm{X}_{2}$

Example

$\mathrm{S} \rightarrow \mathrm{TU}$
$\mathrm{T} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{aA} \mid \varepsilon$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \varepsilon$
$\mathrm{U} \rightarrow \mathrm{ccA} \mid \mathrm{B}$

Nullable variables?
Productions removed?
Productions added?

Removing A -> B (Unit Productions)

$$
\begin{aligned}
& A->B \\
& B->~
\end{aligned}
$$

$$
\mathrm{S} \in\left\{\mathrm{~V} \mathrm{U} \sum\right\}^{*}
$$

- A variable B is A -derivable if $\mathrm{A}-*>\mathrm{B}$

Find all A-derivable variables for each A Remove all unit transitions

If $B->s$ and B is A-derivable then add $\mathrm{A}->\mathrm{s}$

Example

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{TU}|\mathrm{~T}| \mathrm{U} \\
& \mathrm{~T} \rightarrow \mathrm{AB}|\mathrm{~A}| \mathrm{B} \\
& \mathrm{~A} \rightarrow \mathrm{U} \rightarrow \mathrm{bB} \mid \mathrm{b} \\
& \mathrm{~A} \rightarrow \mathrm{cc} \mathrm{~A}|\mathrm{a}| \mathrm{B} \mid \mathrm{cc}
\end{aligned}
$$

S-derivable:
T-derivable:
U-derivable:
Productions removed:
Productions added:

Remove $\mathrm{A}->\mathrm{S}_{1} \mathrm{aS}_{2}$

A-> $\mathrm{S}_{1} \mathrm{aS}_{2}$
$a \in \sum, S_{1}$ and S_{2} are strings, at least one is not empty
Create
$X_{a} \rightarrow>$
$A->S_{1} X_{a} S_{2}$
Then fix up A-> $S_{1} X_{a} S_{2}$

- why? what rule is violated?
- how?

Remove A-> $\mathrm{S}_{1} \mathrm{X}_{\mathrm{a}} \mathrm{S}_{2}$

$A \rightarrow S_{1} X_{a} S_{2}$

A ->

Pacific University
$\mathrm{S} \rightarrow \mathrm{ASA} \mid \mathrm{aB}$
$\mathrm{A} \rightarrow \mathrm{B} \mid \mathrm{S}$
$\mathrm{B} \rightarrow \mathrm{b} \mid \varepsilon$

Pacific University

Pushdown Automata

- Machine to recognize Context Free Language
- Similar to an NFA, but contains a stack
- An FA with memory added (LIFO!)

FA

Pushdown Automata

Pushdown Automata

- PDA may be deterministic or nondeterministic
- Not equivalent! (unlike DFA \& NFA)
- NPDA equivalent to CFG.
- each process has its own stack
- Define certain (state, input) to push data onto the stack
- Combine input string with stack data for δ

PDA

File Input Test View Convert Help

Pushdown Automata (Informally)

$$
\begin{aligned}
& \mathrm{S}->\mathrm{X} \\
& \mathrm{X}->(\mathrm{X})|\mathrm{XX}| \varepsilon \\
& \text { What language? Regular? }
\end{aligned}
$$

How would you solve this problem using a stack (forget the Pushdown Automata)?

Formal Definition

- 6-tuple!
- Q: set of states
$-\Sigma$: input alphabet
$-\Gamma$: stack alphabet
$-\delta: \mathrm{Q} \times \Sigma_{\mathrm{\varepsilon}} \times \Gamma_{\varepsilon}->P\left(\mathrm{Q} \times \Gamma_{\varepsilon}\right)$
- input and top of stack to transition
- Do not read or write from stack: $\Gamma_{\varepsilon}=\varepsilon$
$-\mathrm{q}_{0} \in \mathrm{Q}$: start state
$-\mathrm{F} \subseteq \mathrm{Q}$: set of accept states

Example (Non-deterministic)

- $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \quad \mid \mathrm{n}>0\right\}$

CS 310 - Fall 2014
Pacific University

Practice

- $\left\{w^{R} \mid w \in\{0,1\}^{*}\right\}$
hint: push symbols onto the stack, at each point guess that the middle of the string
has been reached and begin popping from stack

Examples

- Build a PDA for:
$\left\{w \mid w \in\{0,1\}^{*}\right\}$
$\left\{\mathrm{w} \# \mathrm{w}^{\mathrm{R}} \mid \mathrm{w} \in\{0,1\}^{*}\right\}$
$\left\{0^{\mathrm{n}} 1^{\mathrm{n}} ; \mathrm{n}>=0\right\}$
$\left\{\mathrm{w} \mid \mathrm{w} \in\{0,1\}^{*}\right.$; w contains an equal number of 0 s and 1 s$\}$ $\left\{\mathrm{w} \mid \mathrm{w} \in\{0,1\}^{*} ; \mathrm{w}\right.$ contains more 1 s than 0 s$\}$ $\left\{\mathrm{w} \mid \mathrm{w} \in\{0,1\}^{*} ; \mathrm{w}\right.$ contains an unequal number of 1 s and 0 s$\}$ $\left\{\mathrm{wy} \mid \mathrm{w} \in\{0,1\}^{*}, \mathrm{y} \in\{0,1\}^{*} ; \mathrm{y}\right.$ is the string w with every character flipped ($0->1,1->0$) \}
- Read p 119 - 122 for next time!

