CS310

Chomsky Normal Form Section: 2.1 page 106 Pushdown Automata Sections: 2.2 page 109

October 10, 2014

Quick Review

(CFG) 4-tuple (V, ∑, R, S)
− V finite set of variables

Example A -> 0A1 A -> B B -> #

В

 $-\sum$ finite set of terminals

- R set of rules of form:
 - variable -> (string of variables and terminals)
- $-S \in V$, start variable

$$-L(G) = \{ w \in \sum^* | S - * \rangle w \}$$

• w is in \sum^* and can be derived from S

Chomsky Normal Form

- CNF presents a grammar in a standard, simplified form:
 - A-> BC
 - A -> a
 - S -> ε
 - Where A,B,C are variables and B and C are not the start variable
 - -a is a terminal
 - The rule S -> ε is allowed so the language can generate the empty string (optional)

CNF Benefits

- Easier to prove statements about CFG's when in CNF
- Any CFG can be converted to CNF
- Remove productions:
 - $A \rightarrow \epsilon$ to empty
 - A -> B Unit rule
 - A -> s, s contains a terminal and |s| > 1

A -> s,
$$|s| > 2$$

$$s \in \{VU\sum\}^*$$

Removing A -> ε S -> UAV A -> ε

A variable A is *nullable* if A-*> ε
 Find all nullable variables
 Remove all ε transitions

If $T \rightarrow X_1 A X_2$ and A is nullable then add $T \rightarrow X_1 X_2$

Example

S -> TU T -> AB A -> aA | ε B -> bB | ε U -> ccA | B

Nullable variables? Productions removed? Productions added?

Removing A -> B (Unit Productions) A-> B B-> s

 $S \in \{VU\sum\}^*$

A variable B is A-derivable if A-*>B
 Find all A-derivable variables for each A
 Remove all unit transitions

If $B \rightarrow s$ and B is A-derivable then add $A \rightarrow s$

Example

$S \rightarrow TU | T | U \qquad B \rightarrow bB | b$ $T \rightarrow AB | A | B \qquad U \rightarrow ccA | B | cc$ $A \rightarrow aA | a$

S-derivable: T-derivable: U-derivable: Productions removed: Productions added:

Remove $A \rightarrow S_1 a S_2$

- A-> S_1aS_2
- $a \in \sum, S_1$ and S_2 are strings, at least one is not empty

Create

 $X_a \rightarrow a$ $A \rightarrow S_1 X_a S_2$ Then fix up $A \rightarrow S_1 X_a S_2$ - why? what rule is violated? - how?

A ->

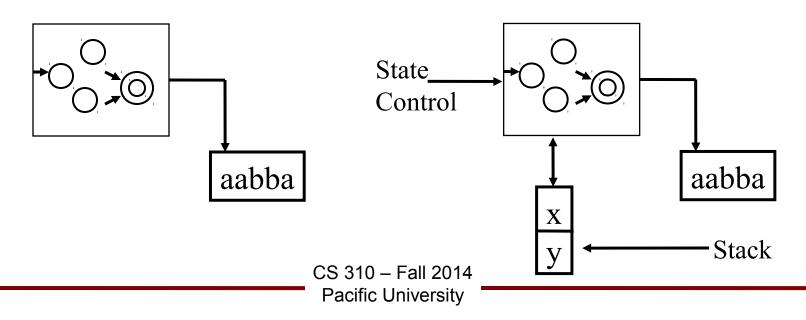
$S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \epsilon$

CS 310 – Fall 2014 Pacific University

Put in to CNF

Pushdown Automata

- Machine to recognize Context Free Language
- Similar to an NFA, but contains a *stack*
 - An FA with memory added (LIFO!)



Pushdown Automata

- PDA may be deterministic or nondeterministic
 - Not equivalent! (unlike DFA & NFA)
 - NPDA equivalent to CFG.
 - each process has its own stack
- Define certain (state, input) to push data onto the stack
- Combine input string with stack data for $\boldsymbol{\delta}$

PDA

۵	JFLAP :	JFLAP : <untitled2></untitled2>				
File Input Test View Conve	ert Help		×			
Editor Simulate: 000						
0,ε;0	0	,ε;1	0,ε;2			
000 {	(0) 000 {	(a) 000 [(n) 000 [*			
000Z	100Z	221Z	210Z			
Step Reset Freeze Thaw	Trace Remove					

Pushdown Automata (Informally) $S \rightarrow X$ $X \rightarrow (X) | XX | \varepsilon$ What language? Regular?

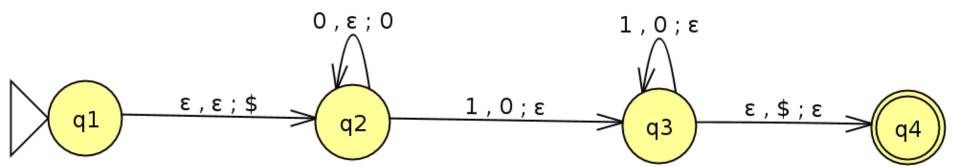
How would you solve this problem using a stack (forget the Pushdown Automata)?

Formal Definition

- 6-tuple!
 - Q: set of states
 - $-\Sigma$: input alphabet
 - $-\Gamma$: stack alphabet
 - $-\delta: \mathbf{Q} \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow P(\mathbf{Q} \times \Gamma_{\varepsilon})$
 - input and top of stack to transition
 - Do not read or write from stack: $\Gamma_{\varepsilon} = \varepsilon$
 - $-q_0 \in Q$: start state
 - $F \subseteq Q$: set of accept states

Example (Non-deterministic)

• $\{ 0^n 1^n | n > 0 \}$



Input	0		1			3			
Stack	0	\$	3	0	\$	3	0	\$	3
q1	Ø	Ø	Ø	Ø	ø	Ø	ø	Ø	{(q2,\$)}
q2	ø	Ø	$\{(q2,0)\}$	$\{(q3, \varepsilon)\}$	ø	Ø	ø	Ø	Ø
q3	ø	ø	Ø	$\{(q3, \varepsilon)\}$	ø	ø	ø	$\{(q4, \varepsilon)\}$	Ø
q4	ø	Ø	Ø	Ø	ø	Ø	ø	Ø	Ø

Practice

• $\{ ww^R \mid w \in \{0, 1\}^* \}$

hint: push symbols onto the stack, at each point guess that the middle of the string

has been reached and begin popping from stack

Examples

• Build a PDA for:

 $\{w \mid w \in \{0,1\}^*\}$ $\{w \# w^{R} \mid w \in \{0,1\}^{*}\}$ $\{0^n 1^n : n \ge 0\}$ $\{w \mid w \in \{0,1\}^*; w \text{ contains an equal number of } \}$ 0s and 1s $\{w \mid w \in \{0,1\}^*; w \text{ contains more } 1 \text{ s than } 0 \text{ s}\}$ $\{w \mid w \in \{0,1\}^*; w \text{ contains an unequal number}\}$ of 1s and 0s} $\{wy | w \in \{0,1\}^*, y \in \{0,1\}^*; y \text{ is the string } w$

with every character flipped (0,-1), y is the string w

• Read p 119 – 122 for next time!