CS310

Context Free Languages and Grammars
 Sections:2.1 page 99

October 6, 2014

Pacific University

Context Free Grammar

- Another way to represent a language
- Can represent more languages than a NFA
- Produces a "Context Free Language"
- Pushdown Automata: machine that recognizes a context free language
- Trivia:
- First used to describe human languages
- Now used to parse computer languages (C, C++)

Context Free Grammar

- Example

$$
\begin{aligned}
& A \rightarrow O A 1 \\
& A \rightarrow B \\
& B \rightarrow \#
\end{aligned}
$$

Productions or Rules to describe a CFG.

Variables: A, B (may appear on LHS and RHS)
Terminals: 0,1 , \# (only appear on the RHS)
Start variable: Variable on LHS of top rule

Language:

Example

- A \rightarrow
$\rightarrow 00 \# 11$
- derivation
- write $u \rightarrow^{*} v$ if there is a derivation of the string v from u using the grammar, where u and v are strings of terminals and variables
$-0 A 1 \rightarrow * 00 \# 11$
- Parse Tree

Exercise

$$
\begin{aligned}
& \mathrm{R} \rightarrow \mathrm{XRX} \mid \mathrm{S} \\
& \mathrm{~S} \rightarrow \mathrm{aTb} \mid \mathrm{bTa} \\
& \mathrm{~T} \rightarrow \mathrm{XTX}|\mathrm{X}| \varepsilon \\
& \mathrm{X} \rightarrow \mathrm{a} \mid \mathrm{b}
\end{aligned}
$$

Variables, terminals of G?
Start variable?

- True or false? $\mathrm{T} \rightarrow{ }^{*}$ aba

Formal Definition

- A context free grammar (CFG) G is a 4-tuple (V, $\left.\sum, ~ R, ~ S\right)$
- V finite set of variables
$-\sum$ finite set of terminals
-R set of rules of form:
variable \rightarrow (string of variables and terminals)
$-S \in V$, start variable
- The language of the grammar is:

$$
\mathrm{L}(\mathrm{G})=\left\{\mathrm{w} \in \sum^{*} \mid \mathrm{S} \rightarrow^{*} \mathrm{w}\right\}
$$

Example

- $\mathrm{L}=\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid \mathrm{aa}\right.$ is a substring $\}$

Find a grammar that generates this language

- Can we write this as a regular expression?

Constructing a CFG from a Language, L

- Requires some thought and creativity, just like building a Finite Automaton
- Hints:
- If possible, break L into pieces $\mathrm{L}=\mathrm{L} 1 \mathrm{U} \mathrm{L} 2$
- Create grammar for L 1 and $\mathrm{L} 2, \mathrm{~S} \rightarrow \mathrm{~S}_{\mathrm{L} 1} \mid \mathrm{S}_{\mathrm{L} 2}$
- If L is regular, use regular expression as guide
- If L is regular, construct DFA then construct CFG:
- Make variable R_{i} for each state q_{i} in DFA
- Add rule $\mathrm{R}_{\mathrm{i}} \rightarrow \varepsilon$ for all $\mathrm{q}_{\mathrm{i}} \in \mathrm{F}, \mathrm{R}_{\mathrm{i}} \rightarrow \mathrm{aR}_{\mathrm{z}}$ if $\delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{a}\right)=\mathrm{q}_{\mathrm{z}}$
- R_{0} is start where q_{0} is start of DFA

Example

- Grammar G_{2} on page 101
- Show derivation for "a boy sees a flower"
- Notice how this statement is non-creepy?
- Show the parse tree

Write the Grammar

$$
\Sigma=\{0,1\}
$$

- $\{\mathrm{w} \mid \mathrm{w}$ is a binary number greater than 4$\}$
- $\left\{\mathrm{w} \mid \mathrm{w}\right.$ is $\left.1^{\mathrm{n}} 0^{\mathrm{n}}, \mathrm{n}>=0\right\}$

$$
? \mathrm{n}>=1
$$

- $\left\{\mathrm{w} \mid \mathrm{w}\right.$ is $1^{\mathrm{n}} 0^{\mathrm{n}}, \mathrm{n}>=0, \mathrm{n}$ is even $\}$
- $\{\mathrm{w} \mid \mathrm{w}$ contains at least three 1 s$\}$
- $\{\mathrm{w} \mid \mathrm{w}$ contains more 1 s than 0 s$\}$
- $\{\mathrm{w}||\mathrm{w}|$ is prime $\}$
- $\left\{\mathrm{a}^{\mathrm{i}} \mathrm{b}^{\mathrm{j}} \mathrm{c}^{\mathrm{k}} \mid \mathrm{i}=\mathrm{j}\right.$ or $\left.\mathrm{i}=\mathrm{k}\right\} \Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- $\{\mathrm{W} \mid \mathrm{W}$ is a string of matched () $\} \quad \Sigma=\{()$,

Ambiguous Grammar

- $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{Ex} \mathrm{E}| \mathrm{E} \mid \mathrm{a}$
- Find parse tree for: a +a x a

Pacific University

More examples

$$
\Sigma=\{0,1\}
$$

- $\{\mathrm{w}||\mathrm{w}|$ is odd, middle character is 0$\}$
- $\left\{w \mid w=x y x, x \in \Sigma, y \in \Sigma^{*}\right\}$
- $\left\{w \mid w=w^{R}\right\}$
- complement of $\left\{w \mid w=0^{n} 1^{n}, n \geq 1\right\}$
- $\left\{w \# x \mid w^{R}\right.$ is a substring of $\left.x ; w, x \in \Sigma^{*}\right\}$
- $\left\{w \mid w=0^{n+m} 1^{n}, n \geq 1, m \geq 1\right\}$
- $\{w \mid w$ contains at least as many 0s as 1 s$\}$
- $\left\{w \mid w=0^{2 n} 1^{n}, n \geq 1\right\}$
- $\{w \mid w$ contains twice as many 0 s as 1 s$\}$

