Theoretical Computer Science CS 310

Chadd Williams

Office Hours: chadd@pacificu.edu

Mon 2-4pm 202 Strain

Wed 2-4pm

Thur 2-4pm

and by appointment

http://zeus.cs.pacificu.edu/chadd/cs310f14/

Syllabus

http://zeus.cs.pacificu.edu/chadd/cs310f14/syllabus.html

- Introduction to the Theory of Computation by Michael Sipser, (Second Edition)
 - I will assign problems out of this book
 - I expect you to do the readings

Policies:

- Class starts promptly at 4:45pm
- Assignments are due at the beginning of class. Late assignments will not be accepted.
- Programs that do not compile lose 70% (JFLAP)
- The cheating policy is defined in the Pacific Catalog
- Silence all electronic devices
- Participation can raise/lower your grade
 - much board work

Syllabus

Grade Distribution

Homework	20%
Unannounced Quizzes	5%
Exam 1	25%
Exam 2	25%
Final	25%

Percent Breakdown

		92-100	Α	90-92	A-
88-90	B+	82-88	В	80-82	B-
78-80	C+	72-78	С	70-72	C-
68-70	D+	60-68	D		
0-60	F				

Tentative Dates:

- Midterm 1, Mon, Sept 29, 2014
- Midterm 2, Fri, November 7, 2014
- Final, Friday Dec 5 (3-5:30pm)

Today

Overview of class

Mathematical Notation

Proof by Induction

Who are we?

- Is Computer Science a science?
 - Is it a *natural* science?

What do we study?

Overview

- What are the fundamental capabilities and limitations of computers?
- How does theory related to programming?
- Complexity Theory
- Computability Theory
- Automata Theory

Mathematical Notation (Chap. 0)

- Basic notations we will use in this class
 - Page 16 of your book has a partial list (no symbols!)

• Set

Subset

Proper Subset

Sets

 Shorthand for describing a set { n | rule about n}

Set Operations

- What can we do with sets?
- Union

Intersection

Complement

Sets

Power Set { 0, 1 }

Cartesian Product (Cross Product){ 0, 1 } X { a, b }

Sequences/Tuples

Sequence

TupleK-tuple

Functions

Object that takes input, produces output
 f (a) = b

Domain and Range

 $f:D\to R$

Onto

Functions

```
    f: A<sub>1</sub> x A<sub>2</sub> x ...x A<sub>k</sub> → R
    (a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>k</sub>)
    k-ary
    arity
    unary (k=1) binary (k=2)
```

Notation

Infix notation: a + b

Prefix notation: add(a,b)

Relations

Predicate (property)

```
f: D \rightarrow \{TRUE, FALSE\}
```

Relation

```
f: A_1 \times A_2 \times ... \times A_n \rightarrow \{TRUE, FALSE\}
```

Notation

table

Set

Equivalence Relations

binary relation shows that two objects are equal

must satisfy 3 conditions:

- 1. R is *reflexive* if for every x, xRx;
- R is symmetric if for every x and y, xRy if and only if yRx;
- 3. R is *transitive* if for every x, y, and z, xRy and yRz implies xRz

Proof by Contradiction

- Assume the concept is false
- Show this leads to a false consequence
 - tricky to pick exactly the false consequence
- Prove √2 is irrational
 - Assume it is rational: $\sqrt{2} = m/n$

Proof by Induction

- BasisProve P(1) is true
- Induction Step
 Prove that for each i≥1, if P(i) is true,
 then so is P(i+1); assume P(i) is true
- Basis + Induction Step
 P(1) is true, i = 1
 P((i+1)) is true
 - P((i+1)+1) is true ...

Proof by Induction

Prove: 1 + 2 + ... + n = n(n+1) / 2
 for n ≥ 1

Basis:

Induction:

Prove by Induction

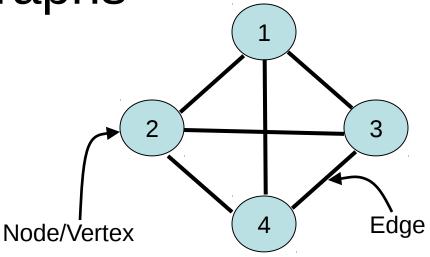
• $n^2 >= 3n, n>=3$

• F_n is the *n*th Fibonacci number, n>=1.

$$-F_{n} = F_{n-1} + F_{n-2}$$

$$-F_1=1$$
; $F_2=1$

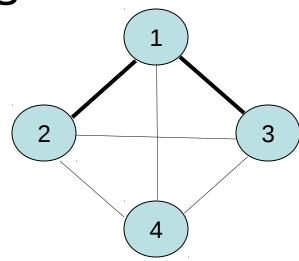
- F_{3n} is even, n>=1
- F_{4n} is evenly divisible by 3, n>=1


Graphs

Graph
 Collection of nodes
 and edges

$$G = (V,E)$$

E =


undirected

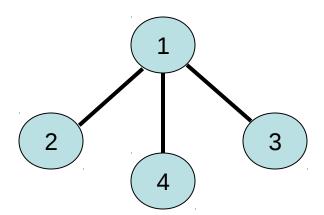
Degree of a node

Graphs

Subgraph

Path

Connected graph


Cycle

Trees

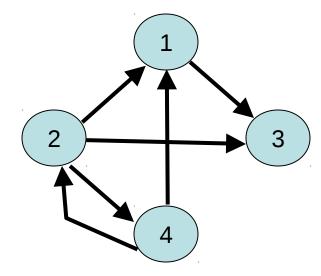
Connected graph with no simple cycles

Leaves

Root

Directed Graph

Arrows denote which way an edge goes


outdegree/indegree

$$G=(V,E)$$

V=

E=

Directed path

Strongly connected