Proof: (PDA) P = (Q, Σ , Γ , δ , q_0 , { q_{accept} })

Variables of G (grammar) are: {A_{pq} | p,q is in Q}

Start variable is $A_{q0,qaccept}$

G's rules:

For each p,q,r,s in Q, t in Γ , and a,b in Σ ,

if $\delta(p,a,\epsilon)$ contains (r,t) and $\delta(s,b,t)$ contains (q, ϵ) then ADD RULE: A_{pq} -> $aA_{rs}b$

For each p,q,r in Q ADD RULE: $A_{pq} \rightarrow A_{pr}A_{rq}$ For each p in Q ADD RULE: $A_{pp} \rightarrow \epsilon$