Exam 2 Review

Any topic we discussed in class or that is contained in chapter 0 or 1 or 2 in your book is fair game for the exam.

List the pieces of the tuple used to define a PDA.
List the pieces of the tuple used to define a CFG.
Prove that the following language is or is not context free: $\sum=\{\mathrm{A}, \mathrm{B}\}$
$\mathrm{M}=\{\mathrm{w} \mid \mathrm{w}$ contains an even number of As and an odd number of Bs $\}$
$\mathrm{N}=\{\mathrm{w} \mid \mathrm{w}$ contains an unequal number of As and Bs $\}$
$T=\{w \mid$ the length of w is a power of 3$\}(0,3,9,27,81 \ldots) \sum=\{A\}$
Describe, using a few English sentences, the main concept that allows the $2^{\text {nd }}$ pumping lemma to work (or, why is pumping two variables involved at all?) and how it's different from the $1^{\text {st }}$ pumping lemma (why you only pump one variable).

Why is the following string, s, useless in applying the pumping lemma for the following language $L=\left\{c^{n} a^{n} b^{n} \mid n>=0\right\} s=c c a a b b$

Show that the following language is or is not context free. $\sum=\{\mathrm{A}, \mathrm{B}\}$
$\mathrm{L}=\{\mathrm{w} \mid \mathrm{w}$ contains more As than Bs$\}$
$M=\{\mathrm{w} \mid \mathrm{w}$ contains an unequal number of As and Bs, and twice as many Cs as Ds $\}$
$\mathrm{Q}=\mathrm{L} \cap \mathrm{M}$ [First, describe in English the language Q]
Build a PDA that recognizes the language $L=\left\{a^{2 n} b^{n} \mid n>=0\right\}$
Build a CFG that recognizes the above language. Using your grammar, build the parse tree for aaaabb

Build a PDF and CFG that recognizes the following language or show that you cannot. $\mathrm{L}=\left\{\mathrm{a}^{2 \mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n}>=0\right.$ AND $\left.\mathrm{n} \% 2=1\right\}$

Build a PDA and CFG for the following language or show that you cannot.
$\mathrm{L}=\left\{\mathrm{a}^{2 \mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{a}^{\mathrm{q}} \mathrm{b}^{2 \mathrm{q}} \mid \mathrm{n}>0, \mathrm{q}>0\right\}$
Imagine that instead of a stack you used a queue in your PDA (a queue pushes on one end and pops from the other end; First In, First Out). Does this change the set of languages you can accept with a PDA?

1) Give an example of a language that you could accept with either a stack or a queue in your PDA
2) Give an example of a language that you could only accept with a stack in your PDA
3) Give an example of a language that you could only accept with a queue in your PDA.
4) Could a PDA with a queue accept all regular languages?

Change the following grammar into CNF. First, list all of the nullable variables.
$\mathrm{S} \rightarrow \mathrm{ABC} \mid \varepsilon$
$\mathrm{A} \rightarrow \mathrm{CB} \mid$ ba $|\mathrm{a}| \varepsilon$
$\mathrm{B} \rightarrow \mathrm{aB}|\mathrm{bB}| \mathrm{b}$
$\mathrm{C} \rightarrow \mathrm{cCC} \mid \mathrm{cc}$

If A and B are languages, define $A Z B=\left\{x y \mid x \in A\right.$ and $y \in B$ and $\left.|x|=2^{*}|y|\right\}$. Show that if A and B are regular languages, then $\mathrm{A} \boldsymbol{X}$ is a CFL.

Build a grammar for the following language or show that the language is not a CFL: $\mathrm{L}=\{\mathrm{w} \mid \mathrm{w}$ is not a palindrome $\} \sum=\{\mathrm{a}, \mathrm{b}\}$

Show that the following language is or is not a CFL.
$\mathrm{L}=\left\{\mathrm{w} \mid \mathrm{zwy}^{\mathrm{R}} \mathrm{ykw}^{\mathrm{R}} ; \mathrm{z} \in\{0,1\}^{*}, \mathrm{k} \in\{0,1\}^{*}, \mathrm{y} \in\{0,1\}^{*}, \mathrm{w} \in\{0,1\}^{*}\right\}$

The following restriction is part of the CFL pumping lemma:
$|\mathbf{v x y}|<=\mathbf{p}$
\mathbf{v} and \mathbf{y} are the pump-able parts of the string.
The equivalent restriction in the regular language pumping lemma is $|\mathrm{xy}|<=\mathrm{p}$, with x being the prefix of the string.

1) Why does the regular language pumping lemma include the prefix of the string in the restriction $|\mathbf{x y}|<=\mathbf{p}$?
2) Why does the CFL pumping lemma not include the prefix (u) of the string in the restriction $|\mathbf{v x y}|<=\mathbf{p}$?
$L=\left\{w \mid w\right.$ is $\left.a^{2 n} b^{n} ; \quad n>=1\right\}$
Build a grammar for L and prove that your grammar represents the language L correctly. For this proof to go smoothly, you really need to make sure your grammar is as minimal as possible.

Pick any grammar you wrote and turn that grammar into a PDA.
From your book: 2.24, 2.30 2.31, 2.32, 2.33, 2.36, 2.39, 2.41, 2.45
The starred problems are especially hard and likely more difficult than your exam questions.

