Regular Expressions
Sections: 1.3 page 63

September 17, 2008
Use regular operations (Union, Concat, Kleene Star) and languages to create a regular expression R whose value is a language $L(R)$ not unique in general order of operations: \ast, concat, U

$$R = 0^*10^*, \quad L(R) = \{w \mid w \text{ has exactly one } 1\}$$
Regular Expressions

\[R = 0^*10^*, \quad L(R) = \{ w \mid w \text{ has exactly one } 1 \}\]

Many programming languages contain a Regular Expression library

\[\text{str} = \sim /0^*10^*/ \quad \# \text{ Perl anyone?} \]

\(\Sigma \) is used to represent one symbol from the language
Exercise

\{ w \mid (w \text{ starts with 0 and has odd length}) \text{ or } (w \text{ starts with 1 and has even length}) \}

NFA?

How do we write this as a RE?
Definition
An expression \(R \) is Regular if:

\[
\begin{align*}
R &= a, \ a \in \Sigma \\
R &= \varepsilon \\
R &= \emptyset \\
R &= R_1 \cup R_2, \ R_1, \ R_2 \text{ are regular} \\
R &= R_1R_2, \ R_1, \ R_2 \text{ are regular} \\
R &= R_1^*, \ R_1 \text{ is regular}
\end{align*}
\]

Theorem: A language is regular if and only if some regular expression describes it. Can be represented by an NFA
Proof

Lemma (1.55): If L is described by a regular expression R, then there exists an NFA that accepts it.

Proof: For each type of regular expression, develop an NFA that accepts it.

- $R = a$, $a \in \Sigma$
- $R = \varepsilon$
- $R = \emptyset$
- $R = R_1 \cup R_2$, R_1, R_2 are regular
- $R = R_1R_2$, R_1, R_2 are regular
- $R = R_1^*$, R_1 is regular
Example

aa* U aba*b*
Exercise

\{w \mid \text{every odd position of } w \text{ is } 1 \}\}

NFA?

How do we write this?
Exercise

\{ w \mid w \text{ does not contain } 110 \}

NFA?

How do we write this?
Exercise

\{w \mid \text{w contains even \# 0s or exactly two 1s}\}

NFA?

How do we write this?
Proof

Lemma: If a language is regular, it is described by a regular expression

Proof Idea: If a language is regular, there exists a DFA that accepts it. We need to convert a DFA to a regular expression.

Steps:
Convert DFA to GNFA
Convert GNFA to Regular Expression
GNFA?!
Generalized NFA

NFA where the transitions may have regular expressions as labels rather than just Σ or ε

Reads *blocks* of symbols from the input

Wait, why are we doing this?

to build up the regular expression slowly from the DFA
Start state transitions to every other state, no transitions to start state

Single accept state, transition to it from every other state, no way out, Start state != accept state

Except for the start and accept states, one arrow goes from every state to every other state (except the start state) and also from every state to itself.

Special case of GNFA that we will use!
DFA to GNFA

- Add new start state with ε-transitions to old start state and \emptyset to every other state.
- \emptyset means you never take the transition.
- Replace multiple transitions in same direction with Union.
- If no transition exists between states, add transitions with \emptyset labels (just as placeholders).
DFA to Regular Expression

2 states
How many transitions?
What do the labels on the transitions look like?

We can reduce the GNFA by one state at a time
GNFA to Regular Expression

Each GNFA has at least 2 states (start and accept)

To convert GNFA to Regular Expression:
GNFA has k states, k \geq 2

if k > 2 then
 Produce a GNFA with k-1 states
repeat
GNFA to $k-1$ States

Pick any state in the machine that is not the start or accept state and remove it.

Fix up the transitions so the language remains the same.

This change needs to be made for every pair of states connected through the removed state.
Example, NFA to Regular Expression

[Diagram of an NFA with states and transitions labeled with 'a', 'b', 'a', and 'b'.]