CS310

Strings, String Operators, and Languages

Sections:

August 27, 2008
Quick Review

• Sets (Union, Intersection, [Proper] Subset)
 \{ n | rule about n\}
 Cross Product/Power Set

• Sequences/Tuples

• Functions
 \(f : D \rightarrow R \)

• Relation
 \(f : A_1 \times A_2 \times \ldots \times A_n \rightarrow \{\text{TRUE, FALSE}\} \)
 Equivalence Relations: 3 conditions
Strings

• Alphabet: Any finite set, $\Sigma = \{a, b\}$
• String: Any finite sequence of symbols from a given alphabet
 $w = ababaabba$, string over Σ
 $\epsilon = \text{empty string, zero symbols}$
 length of w: $|w| = \text{number of symbols it contains}$
 $|\epsilon| = |w| =$
• Strings are building blocks of computer science
 strings can represent: data sets (DNA), source code, files...
String Operations

• Closure (Σ^*): set of all strings over Σ, including ε.

$\Sigma = \{a, b\}$ $\Sigma^* = \{\varepsilon, a, b, ab, ba, aa, bb, \ldots\}$

• Concatenations

If $x, y \in \Sigma^*$, then xy is defined to be the concatenation of strings x, y

$x = aba$ $y = bab$ $xy =$ x^k is k copies of x concatenated

$x^2 =$
String Operations

• Prefix/Suffix
 \[z = xy \] for \(x, y, z \in \sum^* \), \(x \) is a prefix of \(z \)
 \(y \) is a suffix of \(z \)

• Reverse
 \(x \in \sum^* \), \(x^R \) is the reverse of \(x \)
 \(x = ab \), \(x^R = ba \)
Languages

• Language
 Language L over Σ is a subset of Σ^*

 $L = \{ x \in \{a,b\}^* \mid |x| \text{ is even} \}$

 $= \{\varepsilon, aa, ab, \ldots \}$

• Complement of a language L over Σ
 $\Sigma^* - L = L'$

• Concatenation of languages
 L_1 and L_2 over Σ

 $L_1L_2 = \{xy \mid x \in L_1, y \in L_2\}$

 $L^2 = LL$
Languages

• Union of languages

L_1 and L_2 over Σ

$L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2\}$

$L_1 = \{0\}^*$

$L_2 = \{1\}^*$

what is in $L_1 \cup L_2$?
what is in L_1L_2?
Languages

• Kleene Star

\[L^* = \text{set of strings formed by concatenating any number of strings from } L \]
\[L = \{ x \in \{ a, b \}^* \mid |x| \text{ is odd} \} \]

What does L contain:

\{ \}

\[L^* = \{ \epsilon, \quad , \quad , \quad , \quad , \quad , \} \]
Languages

• Recursive Definitions
 Define L over $\Sigma = \{0, 1\}$ as
 1. $\varepsilon \in L$
 2. If $x \in L$ then $0x1 \in L$
 What is in L? $L = \{\}$

• Can we prove that $\{\varepsilon, 01, 0011, 000111, \ldots\}$ is equivalent to $\{0^i1^i \mid i \geq 0\}$?

• Show L is subset of $\{0^i1^i \mid i \geq 0\}$ and the reverse
Proof

• For $x, y \in \Sigma^*$, show $(xy)^R = y^Rx^R$