CS310

Pumping Lemma
Sections: 1.4 page 77

October 1, 2008
Non-Regular Languages

• Languages that *cannot* be represented by a finite automaton
 – Such as?

• How do we prove a language is not regular?

\[\mathcal{C} = \{ w | w \text{ has an equal number of 0s and 1s} \} \]
\[\mathcal{D} = \{ w | w \text{ has an equal number of occurrences of 01 and 10 as substrings} \} \]
Pumping Lemma (Informal)

Pumping: The length of the string could be ‘pumped’ up by repeating the cycle, and the string would still be accepted.

- All regular languages have a property
 - the pumping length, p
- $|w| = n$, how many states do we go through?
Pumping Lemma (Formally)

- DFA: $M = (Q, \Sigma, \delta, q_0, F)$

If $|Q| = p$ and $s \in L(M)$ and $|s| \geq p$ then there exists at least one state that was visited twice within the first p input symbols

$s = xyz$
Pumping Lemma (Formally)

- If A is a regular language, then:

$s = xyz$

- $i \geq 0$, $xy^iz \in L(M)$
- $|y| > 0$ (x, z may be ε)
- $|xy| \leq p$
Pumping Lemma In Action

• Find a string, $s \in L$, $|s| \geq p$, that cannot be pumped to show language L is not regular.
 – Find a string that exhibits the “essence” of nonregularity
 – Proof method?

• $L = \{ w \mid w \text{ contains equal number of 0s and 1s} \}$
Pumping Lemma in Action

- \(L = \{ w \mid w \text{ contains equal number of 0s and 1s} \} \)

use a different string:
Can that be pumped?

\[
\begin{align*}
s &= \\
x &= \\
y &= \\
z &=
\end{align*}
\]
Practice

- \(L = \{ \text{ww} \mid w \in \{0, 1\}^* \} \)

What string should we choose?

what does \(\text{ww} \) mean?

Can that be pumped?