Quick Review

• Alphabet: \(\Sigma = \{a, b\} \)

\(\Sigma^* \): Closure:

String: any finite sequence of symbols from a given alphabet. \(|w| = \text{length} \)

Concatenation/Prefix/Suffix/Reverse

Language \(L \) over \(\Sigma \) is a subset of \(\Sigma^* \)

\(L = \{ x \ | \ \text{rule about } x \} \)

Recursive Definition

Concatenation/Union/Kleene Star
Finite Automata

• Computer Science is really the science of computation, not of computers.
• How can we reason about computation?
• Simple model of computation
 – Finite Automata
 – extremely limited amount of memory
 – represent *states* of computation
Door State: Open, Closed
Inputs: Front, Rear, Both, Neither

State Transition Table

<table>
<thead>
<tr>
<th>Input State</th>
<th>Neither</th>
<th>Front</th>
<th>Rear</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
State Diagram

Closed

Open
More uses…

• Recognize patterns in data
• Build an automata that can classify a string as part of a language or not

Language:
\[L = \{ x \in \{0,1\}^* \mid x \text{ contains at least one } 1 \text{ and the last } 1 \text{ is followed by even number of } 0s \} \]
Inputs: Accept or Reject?

1101 1110 0
1100 1 11

Set of all strings (A) accepted by a machine (M) is the *Language of the Machine* M *recognizes* A or M *accepts* A
Formal Definition

• Deterministic Finite Automata: 5-tuple $(Q, \Sigma, \delta, q_0, F)$

 Q: finite set of states

 Σ: alphabet (finite set)

 δ: transition function ($\delta: Q \times \Sigma \rightarrow Q$)

 q_0: start state

 F: accepting states (subset of Q)
Q: finite set of states
∑: alphabet
δ : transition function
q₀: start state
F : accepting states
Q: What strings get accepted?

Σ:

δ:

q₀:

F:

L(M) = { }
Designing a DFA

• Identify small pieces
 – alphabet, each state needs a transition for each symbol
 – finite memory, what crucial data does the machine look for?
 – can things get hopeless? do we need a trap?
 – where should the empty string be?
 – what is the transition into the accept state?
 – can you transition out of the accept state?

• Practice!
\[L(M) = \{ w \mid w = \varepsilon \text{ or } w \text{ ends in 1} \} \]
\[\Sigma = \{ 0, 1 \} \]

Q:

\[\delta : \]

q₀:

F:
• $\Sigma = \{0,1\}$, $L(M) = \{w \mid \text{odd # of 1s}\}$
Build a DFA to do math!
L(M) = Accept sums that are multiples of 3
Σ = { 0,1,2, <Reset>}
Keep a running total of input, modulo 3
• $\Sigma = \{0,1\}$, $L(M) = \{w \mid \text{begins with 1, ends with 0} \}$
• $\Sigma = \{0, 1\}$, $L(M) = \{w \mid \text{contains 110}\}$
• $\Sigma = \{0, 1\}$, $L(M) = \{w \mid \text{does not contain 110}\}$
• $\Sigma = \{0,1\}, \ L(M) = \{w \mid (01)^* \}$
• \(\Sigma = \{0, 1\} \), \(L(M) = \{ w | w \text{ even #0s, odd #1s} \} \)
• $\Sigma = \{0,1\}$, $L(M) = \{w \mid w$ any string except 11 and $111 \}$
Formal Definition of Computing

• Given a machine \(M = (Q, \Sigma, \delta, q_0, F) \) and a string \(w = w_1w_2 \ldots w_n \) over \(\Sigma \), then \(M \) **accepts** \(w \) if there exists a sequence of states \(r_0, r_1, \ldots, r_n \) in \(Q \) such that:
 - \(r_0 = q_0 \): \(r_0 \) is the start state
 - \(\delta (r_i, w_{i+1}) = r_{i+1}, i = 0, \ldots, n-1 \): legal transitions
 - \(r_n \in F \): stop in an accept state

• \(M \) **recognizes** \(A \) if \(A = \{ w \mid M \text{ accepts } w \} \)

• Language \(A \) is **regular** if there exists a Finite Automata that recognizes \(A \).