
More Inheritance

• Book: 9.9, 10.4

• More Inheritance

• Polymorphism

• Virtual Functions

CS250 - Intro to CS II 1Spring 2019

Destructors

• The opposite of constructors

CS250 - Intro to CS II 2Spring 2019

Constructor/Destructor Example

CS250 - Intro to CS II 3Spring 2019

class Employee
{
public:
Employee (string name = "",

string ssn = ""); // cout << ctor: Name

~Employee() { cout << “dtor ” << mName << “\n”; }

private:
string mName;
string mSSN;

};

What is the output?

void funct ();

int main ()
{

Employee cTest1 (“Doug”);
funct ();
Employee cTest3 (“Shereen”);

return EXIT_SUCCESS;
}

void funct ()
{
Employee cTest2 (“Chadd”);

}

CS250 - Intro to CS II 4Spring 2019

Polymorphism

• Code is said to be polymorphic if
executing the code with different types of
data (objects) produces different behavior

• Program in the general, rather than
program in the specific

• Virtual functions make polymorphism
possible

CS250 - Intro to CS II 5Spring 2019

UML

Spring 2019 CS250 - Intro to CS II 6

// base class pointer
Employee *pcEmp = nullptr;

char choice;

cin>> choice;

switch(choice)
{

case 'H':

pcEmp = new HourlyEmployee();
break;

case 'S’:
pcEmp = new SalariedEmployee();
break;

}

pcEmp->read(cin); // which read() is called?
// what do we want to have happen?

Spring 2019 CS250 - Intro to CS II 7

Motivation

Base Pointers

• A base class pointer can point at a child class
object

• Calling a function on the base class pointer calls a
function in the base class

• To cause a function in the child class to be called,
mark the function as virtual

Spring 2019 CS250 - Intro to CS II 8

Virtual Functions

• You can tell the compiler to select the
more specialized version of a member
function by declaring the member function
to be a virtual function

• Declare a virtual function by prefixing its
declaration with the word virtual

CS250 - Intro to CS II 9Spring 2019

Virtual Function Example
class Employee
{

public:
Employee (string name = "",

string ssn = "");
string getName () const;
string getSSN () const;
virtual void print (ostream &rcOut) const;

virtual bool read(istream &rcIn);

private:
string mName;
string mSSN;

}; CS250 - Intro to CS II 10Spring 2019

Virtual Function Example
class HourlyEmployee : public Employee
{

public:
HourlyEmployee ();
HourlyEmployee (string name, string ssn,

double hourlyRate, double hoursWorked);

double getPay() const;
void addWorkedHours(double hours);

virtual void print(ostream &rcOut) const;

virtual bool read(istream &rcIn);

private:
double mWageRate;
double mHoursWorked;

};

CS250 - Intro to CS II 11Spring 2019

Virtual Function Example

bool HourlyEmployee::read(istream &rcIn) {

if(Employee::read(rcIn) &&
rcIn >> mWageRate >> mHoursWorked)

{
return true;

}

return false;
}

CS250 - Intro to CS II 12Spring 2019

Virtual Function Example

void displayEmployee(const Employee &rcEmp) {

rcEmp.print(cout);
}

// You can pass a child class object
// by reference as a parent object

displayEmployee(*pcEmp);

CS250 - Intro to CS II 13Spring 2019

UML

Spring 2019 CS250 - Intro to CS II 14

Virtual Destructor

• Any potential base class should have a virtual
destructor

• Why? The compiler performs static binding on
any destructor not declared virtual

CS250 - Intro to CS II 15Spring 2019

Which dtors get called?

Spring 2019 CS250 - Intro to CS II 16

Employee *pcEmp = new
HourlyEmployee();

delete pcEmp;

Without virtual dtor With virtual dtor

STOP

Spring 2019 CS250 - Intro to CS II 17

What is the output? Why?

•If the following 2 changes are made to the previous program,
what is the output? Why?

virtual void Def1::Foo () {out << "Def1->Foo" << endl;}

virtual void Def2::Foo () {cout << "Def2->Foo" << endl;}

int main ()
{

Def1 *pcDef1 = new Def1;
Def1 *pcDef2 = new Def2;
pcDef1->Foo();
pcDef2->Foo();
delete pcDef1;
delete pcDef2;

}
CS250 - Intro to CS II 18Spring 2019

Virtual Destructor

virtual ~Def1 () {cout << "~Def1" << endl;}

int main ()
{

Def1 *pcDef1 = new Def1;
Def1 *pcDef2 = new Def2;
pcDef1->Foo();
pcDef2->Foo();
delete pcDef1;
delete pcDef2;

}
CS250 - Intro to CS II 19Spring 2019

Consider

class Def1
{

public:
Def1 (int id) : mID(id) {cout << “Def1” << mID << ”\n";}
~Def1 () {cout << "~Def1 “ << mID << “\n";}

void Foo () {cout << "Def1->Foo\n";}
private:
int mID;

};

class Def2 : public Def1
{

public:
Def2 (int id) : Def1(id) {cout << “Def2” << mID << ”\n";}
~Def1 () {cout << "~Def2 “ << mID << “\n";}
void Foo () {cout << "Def2->Foo\n";}

};

CS250 - Intro to CS II 20Spring 2019

What is the output? Why?

int main ()
{

Def1 *pcDef1 = new Def1;
Def2 *pcDef2 = new Def2;
pcDef1->Foo ();
pcDef2->Foo ();
delete pcDef1;
delete pcDef2;

}

CS250 - Intro to CS II 21Spring 2019

What is the output? Why?

int main ()
{
Def1 *pcDef1 = new Def1;
Def1 *pcDef2 = new Def2; // type Def2 to Def1
pcDef1->Foo();
pcDef2->Foo();
delete pcDef1;
delete pcDef2;

}

CS250 - Intro to CS II 22Spring 2019

