
CS250 Intro to CS II

Spring 2019

Spring 2019 CS250 - Intro to CS II 1

Pointers, Dynamic Memory

Spring 2019 CS250 - Intro to CS II 2

Pointers

• A pointer is the memory address of a
variable

Spring 2019 CS250 - Intro to CS II 3

Pointer Example

int main () {
char *pCh, ch;

pCh = & ch; // addressOf
*pCh = ‘A’; // dereference

cout << "Size of pCh is "
<< sizeof (pCh) << endl;

cout << "Size of ch is "
<< sizeof (ch) << endl;

cout << ch << “ “ << *pCh; // dereference
}

Spring 2019 CS250 - Intro to CS II 4

Name Address Value

pCh

ch

Pointer Declarations

• length is an integer and pLength is a
pointer to an integer
o int *pLength, length;

Spring 2019 CS250 - Intro to CS II 5

AddressOf Operator

• AddressOf operator (&)

• & returns the operand’s memory address

• Example:
o pLength = &length;

Spring 2019 CS250 - Intro to CS II 6

AddressOf Operator

• AddressOf operator cannot be applied to
constants
o int *pX, x = 5;
o const int NUM = 98;
o pX = &x // NO ERROR
o pX = &NUM; // ERROR
o pX = &8; // ERROR

Spring 2019 CS250 - Intro to CS II 7

Pointer Operations

int x, *pX;

x = 8; // set x to a value of 8
pX = &x; // set the pointer variable to point

// to the address of x

cout << "x is: " << x << endl;
cout << "Size of x is: " << sizeof(x) << endl;

cout << "Address of x is: " << pX << endl;
cout << "Address of x is: " << &x << endl;

Spring 2019 CS250 - Intro to CS II 8

Indirection Operator

• Get the value the pointer points to

• The * operator dereferences the pointer
o You are actually working with whatever the pointer is pointing to

• Using the example on the previous slide
o cout << "Value pX is pointing to is: " << *pX
<< endl;

Spring 2019 CS250 - Intro to CS II 9

this Pointer

• this special built-in pointer available to a
class’s member functions.

• this points to the object the function is
called on

• this is passed as a hidden argument to
all nonstatic member functions

Spring 2019 CS250 - Intro to CS II 10

RationalSet

• What do we return?

RationalSet& RationalSet::add (const Rational &rcRational) {
if (!isInSet (rcRational)) {
macRationals[mNumRationals] = rcRational;
++mNumRationals;

}
return *this;

}

Spring 2019 CS250 - Intro to CS II 11

Accessing data members

Accessing data members using pointers

• (*this).mNumerator can be replaced
with this->mNumerator

Spring 2019 CS250 - Intro to CS II 12

Arrays and Pointers

• Array names can be used as constant pointers
• Pointers can be used as array names BUT we will

be careful to use array notation for arrays and
pointer notation for pointers

short aNumbers[] = {5, 10, 15, 20, 25};

cout << "numbers[0] = " << *aNumbers << endl;
cout << "numbers[1] = " << *(aNumbers + 1)

<< endl;
cout << "numbers[2] = " << aNumbers[2]

<< endl;

Spring 2019 CS250 - Intro to CS II 13

Problem

• Consider the following C++ segment

const int SIZE = 8;
int aNumbers[] = {5, 10, 15, 20, 25, 30, 35, 40};
int *pNumbers, sum = 0;

• Write the C++ code using only pointer
notation that will print the sum of the values
found in the array numbers

Spring 2019 CS250 - Intro to CS II 14

Pointer Arithmetic

• Some mathematical operations can be performed on
pointers

a) ++ and -- can be used with pointer variables
b) an integer may be added or subtracted from a

pointer variable
c) a pointer may be added or subtracted from

another pointer
If the integer pointer variable pInt is at location 1000, what is
the value of pInt after pInt++; is executed?

Spring 2019 CS250 - Intro to CS II 15

Pointers and Functions

• What are the two ways of passing arguments into
functions?

• Write two functions square1 and square2 that
will calculate and return the square of an integer.
o square1 should accept the argument passed by

value,
o square2 should accept the argument passed by

reference.

Spring 2019 CS250 - Intro to CS II 16

Pointers as Function Arguments

• A pointer can be a formal function parameter

• Much like a reference variable, the formal
function parameter has access to the actual
argument

• The address of the actual argument is
passed to the formal argument

Spring 2019 CS250 - Intro to CS II 17

Pointers as Function Arguments

void square3 (int *pNum) {

*pNum *= *pNum;

}

• What would a function call to the above
function look like?

Spring 2019 CS250 - Intro to CS II 18

Pointers to Constants

• A pointer to a constant means that the compiler
will not allow us to change the data that the pointer
points to.

void printArray (const int *pNumbers) {

}

Spring 2019 CS250 - Intro to CS II 19

Constant Pointers

• A constant pointer means that the compiler will not
allow us to change the actual pointer value BUT
we can change the data that the pointer points to.

void printArray (int * const pNumbers) {

}

Spring 2019 CS250 - Intro to CS II 20

Constant Pointers to Constants

• A constant pointer to a constant means the compiler
will not allow us to change the actual pointer value
OR the data that the pointer points to.

void printArray (const int * const pNumbers) {

}

Spring 2019 CS250 - Intro to CS II 21

Problem

Using pointer notation, write a C++ function
printCharacters that will accept a character array
and the size of the array. The function will print
each element of the array on a separate line.

Spring 2019 CS250 - Intro to CS II 22

Dynamic Memory Allocation

• Variables can be created and destroyed
while a program is running

• new is used to dynamically allocate space
from the heap. A pointer to the allocated
space is returned

• delete is used to free dynamically
allocated space

Spring 2019 CS250 - Intro to CS II 23

Using new and delete

int *pInt;

pInt = new int;

*pInt = 5;

cout << *pInt << endl;

delete pInt;

Spring 2019 CS250 - Intro to CS II 24

Pointers to Arrays

• We can dynamically create space for an
array

int *pAges, sum = 0;
pAges = new int[100];

for (int i = 0; i < 100; ++i) {
*(pAges + i) = i; // or pAges[i] = i;

}

delete [] pAges;

Spring 2019 CS250 - Intro to CS II 25

NULL Pointer

• A null pointer contains the address 0
• The address 0 is an unusable address

pAges = new int[100];
if (NULL == pAges) {
cout << “Memory Allocation Error\n”;
exit (EXIT_FAILURE);

}

• Only use delete with pointers that were used
with new

Spring 2019 CS250 - Intro to CS II 26

C++11: nullptr

• C++11: new revision of C++

int *pAges = nullptr;

pAges = new int[100];
if (nullptr == pAges) {

cout << “Memory Allocation Error\n”;
exit (EXIT_FAILURE);

}

Spring 2019 CS250 - Intro to CS II 27

