
CS 250 Exam 3 Review

Vocabulary: Inheritance, superclass, subclass, base class, derived class, is-a, has-a, composition,
overloading, access specifiers: public vs private vs protected, this, *this, regular variable versus pointer
variable (int versus int *, char versus char *, …), sizeof, address operator &, dereference operator *, ->,
pointer operations (pInt + 2, *(pInt + 2), ++pInt, pInt++…), difference between arrays and pointers, writing
code using array notation versus pointer notation, pointers as function arguments, int * versus const int
* versus int * const, destructor, polymorphism, virtual functions, static variables, UML Diagrams

1. Show the output of the following program:

class Base {
 public:
 Base (){cout << ”Base” << endl;}
 Base (int i){ cout << ”Base” << i << endl;}
 ~Base(){cout << ”Destruct Base” << endl;}
};

class Der: public Base {
 public:
 Der () {cout << ”Der” << endl;}
 Der (int i): Base(i) { cout << ”Der” << i << endl;}
 ~Der () {cout << ”Destruct Der” << endl;}
};

int main() {
 Base a;
 Der d(2);
 return 0;
}

2. A Cube is derived from a Rectangle. The Rectangle and Cube are to have appropriate

constructors. The Rectangle is to have an area function and a Cube is to have a volume function.
First, write the UML diagram that shows this inheritance and then write the C++ code to declare
& define each class.

3. Time can be displayed in Regular Time or Military Time. Examples:
Military Time is 22:00:00
Regular Time is 10:00:00 PM
Write the proper UML diagram for MilitaryTime and RegularTime.

Regular Time Military Time Regular Time Military Time

12:00 a.m. 0000 12:00 p.m. 1200

1:00 a.m. 0100 1:00 p.m. 1300

2:00 a.m. 0200 2:00 p.m. 1400

3:00 a.m. 0300 3:00 p.m. 1500

4:00 a.m. 0400 4:00 p.m. 1600

5:00 a.m. 0500 5:00 p.m. 1700

6:00 a.m. 0600 6:00 p.m. 1800

7:00 a.m. 0700 7:00 p.m. 1900

8:00 a.m. 0800 8:00 p.m. 2000

9:00 a.m. 0900 9:00 p.m. 2100

10:00 a.m. 1000 10:00 p.m. 2200

11:00 a.m. 1100 11:00 p.m. 2300

Destructor

• What is a destructor and when is a destructor called?
• Why would you want to have a destructor?
• When is a virtual destructor necessary?

Pointers & dynamic memory allocation

• Consider the following C++ program:

class Base {
 public:
 void show() {
 cout << "Base class";
 }
};

class Derived:public Base {
 public:
 void show(){
 cout << "Derived Class";
 }
}

int main() {
 Base* b;
 Derived d;
 b = &d;
 b->show();
}

• Does the above example contain any static binding? If so, what?
• Does the above example contain any dynamic binding? If so, what?

