Review

Works with your teammate. See how many you can get done.

You don't need to submit this solution

Both questions are good exam practice!

One

- Ask the user for a positive, non-negative int, x.
- Display the values 1 to x, x to 1, and x, 2x, 3x,...xx as shown below.

CS150 -

C:\Windows\system32\cmd.exe

Enter	a	positive,	non-negative	integer:	10
-------	---	-----------	--------------	----------	----

	Valu	le	Reverse			Square		
		1 2 3 4 5 6 7 8 9 LO		10 9 8 7 6 5 4 3 2 1			LO 20 30 40 50 50 70 30 50 70 30 50	
Press	any	key	to	continue	e.			

Two

• The Leibniz approximation for Pi/4 is:

$$1 - rac{1}{3} + rac{1}{5} - rac{1}{7} + rac{1}{9} - \dots = rac{\pi}{4}.$$

- Write a program that will ask the user for a positive, non-negative integer, x, and estimate Pi using x terms (5 terms are shown above).
- Build the table shown on the next slide. The columns are 10, 15, and 45 characters wide. Show Pi to 30 digits past the decimal point.
- How many terms do you need to use until you consistently get 3.14 as an answer?

https://en.wikipedia.org/wiki/Leibniz_formula_for_pi

