Review

Works with your teammate. See how many you can get done.

You don't need to submit this solution

Both questions are good exam practice!

One

- Ask the user for a positive, non-negative int, x.
- Display the values 1 to x, x to 1 , and $x, 2 x$, $3 x, \ldots x x$ as shown below.


```
    Enter a positive, non-negative integer: 10
```

Value	Reverse	Square
1	10	10
2	9	20
3	8	30
4	7	40
5	6	50
6	5	60
7	4	70
8	3	80
9	2	90
10	1	100

Press any key to continue . . .

Two

- The Leibniz approximation for Pi/4 is:

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots=\frac{\pi}{4} .
$$

- Write a program that will ask the user for a positive, non-negative integer, x, and estimate Pi using x terms (5 terms are shown above).
- Build the table shown on the next slide. The columns are 10,15 , and 45 characters wide. Show Pi to 30 digits past the decimal point.
- How many terms do you need to use until you consistently get 3.14 as an answer? https://en.wikipedia.org/wiki/Leibniz_formula_for_pi

Enter a positive, non-negative integer: 3
Terms Denominator

1	1	4.000000000000000000000000000000
2	-3	2.66666666666666962726139900042
3	5	3.46666666666666785090455960017

Press any key to continue . . .

[--1 C: \backslash Windows \backslash system 32 \cmd.exe

Enter a positive, non-negative integer: 10
Terms Denominator

1	1	4.000000000000000000000000000000
2	-3	2.666666666666666962726139900042
3	5	3.466666666666666785090455960017
4	-7	2.895238095238095610284290160052
5	9	2.339682539682540252101716760080
6	-11	3.2837384783738484494622841346427
7	13	3.01707181707181781865492804153
8	-15	3.2523659347188766943759219429922
9	17	

Press any key to continue . . .

