
1

structs

 Arrays are useful for storing a collection of data
elements of the same data type

 What about storing a collection of data elements of
different data types?

 Related information can be placed in a structure,
which has a general format as follows:

struct StructName

{

 // variable declarations

};

2

struct Definition

 structs store a collection of data elements of
different data types

 For example, what if we wanted to keep the
following information on a particular employee:
o employee id

o SS#

o number of children

o salary

o citizen

 The elements have different data types, so
we can’t conveniently use an array. Instead
we will use a struct

3

Structure Declaration

To store this information:

 employee id

 SS#

 number of children

 salary

 citizen

We would begin by

defining a structure :

struct Employ

{

 int id;

 int ssnum;

 int numchild;

 double salary;

 bool bCitizen;

};

4

Struct Terminology

For this struct:

struct Employ

{

 int id;

 int ssnum;

 int numchild;

 double salary;

 bool bCitizen;

};

 Employ is the

identifier name and a

new data type.

 The individual

components id,

ssnum, etc. are called

members.

5

Notes on Structures

 A semicolon is required after the closing

brace of the structure declaration

 The structure declaration does not create a

variable

 It just tells the compiler what that structure is

made of

 The struct declaration is usually placed

above the main

6

Variable Declaration

 As with all data types, in order to use our
new data type Employ we must allocate
storage space by declaring variables of this
data type:

 Employ sEngineer, sTech;

 This will allocate space for two variables
called sEngineer and sTech, each
containing the previously described
members id, ssnum, etc.

 Each of these variables is a separate
instance of Employ

7

Dot Operator

 To access a struct member, we use the dot operator
(period between struct variable name and member name).

 In the variable sEngineer of data type Employ we can
make the assignments:

sEngineer.id = 12345;

sEngineer.ssnum = 534334343;

sEngineer.numchild = 2;

sEngineer.salary = 45443.34;

sEngineer.bCitizen = true;

8

CS150 Introduction to
Computer Science 1

Practice

 Read Pacific Soccer scores from a file.

Calculate the Pacific team's record.

 How long is their longest winning streak?

Pacific 5 NorthwestChristian 0

Redlands 2 Pacific 1

LaVerne 0 Pacific 6

.....

Pacific 1 PacificLutheran 0

The home team is

listed first.

No team name contains

a space.

Build a struct

Read the data from the file

9

Notes on Structures

 You cannot output the entire contents of a

struct variable by simply using its name

o cout << sEngineer; // ERROR!

 Similarly, you cannot compare two struct

variables by using their name

o if(sEngineer == sTech) // ERROR!

10

struct Definition

 structs are user defined data types that

can be used to declare variables. The

variables that appear inside of the struct

definition are members of the structure.

11

Payroll Problem

 Consider the following structure:

struct PayRoll

{

 int employeeNumber;

 string name;

 double hoursWorked,

 payRate,

 grossPay;

};

12

Payroll Problem

 Declare a PayRoll variable deptHead and

assign the employeeNumber, name, and

payRate with the values 123, Joe Smith,

and 10.00.

13

Time Problem

 Consider the following struct:

struct Time

{

 int hours,

 minutes,

 seconds;

};

 Write the C++ code that will read in a military time in the
form hh:mm:ss and place hh into hours, mm into
minutes, and ss into seconds. Error check to make sure
that hh is in the range of 0-23, mm is in the range of 0-
59, and ss is in the range of 0-59.

14

Displaying/Comparing structs

 Which of the following C++ statements are legal
given variables time1 and time2 of type Time exist?

a)cout << time1 << time2;

b)if(time1 == time2)

 {

 cout << "times are equal";

 }

c)cout << time1.hours;

d)cin >> time1;

e)cin >> time1.Hours;

15

Initializing Structs UPDATED

 Use an initializer list

o Employ manager = {12345, 534334356,

1, 76899, true};

 You can initialize only some of the members in

a struct, but members that follow a non

initialized member must also be not initialized

o Employ manager = {12345,534334356,1};

o Employ manager = { 12345,,,, true};

16

Initializing Structs

 You cannot initialize structures in the
declaration

struct Employ

{

 int id = 12345;

 int ssnum = 534334356;

 int numchild = 1;

 float salary = 75000;

 bool bCitizen = true;

};

 Why?

ERROR!

17

Passing structs to Functions

 structs can be passed to functions by

reference or value in the same manner that
other data types have been passed

 Generally, passing structs by reference is

preferred since passing by value requires a

local copy of the struct to be created within

the function’s variables

18

Example

struct Date

{

 int day,

 month,

 year;

};

 Create a date variable equal to
Monday, November 22, 2010

 Write a function that accepts a Date
and prints the date out in the form day-
month-year

19

Arrays of structs

 It is possible to declare an array of structs

 A datafile called athletes.txt exists which contains an
unknown amount of information where each line of
the file contains an id, age, and weight of a specific
athlete. The program will contain two functions:

o void readAthleteData - This function reads in up to
100 lines of data into an array of structs and returns the
number of athletes in the datafile.

o int whatAge - This function returns the age of the
athlete with the given idNumber.

 Declare a struct for each athlete’s data

 Create an array of structs to hold all athlete’s data

 Write each function described above

