Logical Operators and if/else statement
Series of If Statements

• We may want to execute some code if an expression is true, and execute some other code when the expression is false.

• This can be done with two if statements...

```c
if( value >= LIMIT )
{
    // do something
}
if( value < LIMIT )
{
    // do something else
}
```
C++ provides a shortcut to combine two `if` statements:

- The statements in the `else` clause are executed only when the expression is false.
int number;
cout << "Enter a number, I’ll tell you";
cout << " if it is odd: ";
cin >> number;

// use an if/else statement here
If/Else: Coding Style

```plaintext
if(expression)
{
    // do stuff
}
else
{
    // do other stuff
}
```
If/Else: Braces

```java
if (expression)
{
    // do stuff

} else
    x += 9;
```

- Always use braces with the `else`!
If/Else: Commenting

// the expression I’m using here
// checks for . . .
if(expression)
{
 // if the expression is true
 // I need to ...
}
else
{
 // if the expression is false
 // I need to ...
}
Q.3 Practice

• Turn this code into an if/else statement:

```c
int x, y;
if (x > y)
{
    x += y;
}
if (y <= x)
{
    y += x;
}
```
Q.4 Practice

• Are these two code snippets equivalent?

```c
int x, y;
if (x > y)
{
    x += y;
}
if (y < x)
{
    y += x;
}
```

```c
int x, y;
if (x > y)
{
    x += y;
}
else
{
    y += x;
}
```
if/else/if statements (4.4)

- What if there are more than two alternatives?
Q.5 Problem

• Write a C++ program segment that allows the user the ability to input an integer from the keyboard. If the integer is positive, increment a variable `poscount` by 1. If the integer is negative, increment a variable `negcount` by 1. If neither, increment `zerocount` by 1.
Q.6 Problem

- Write a program that displays a letter grade corresponding to an exam score

- 90 - 100 A
- 80 - 89 B
- 70 - 79 C
- 60 - 69 D
- 0 - 59 F
Nested if Statements (4.6)

- The second if is only executed if the first if conditional is `false`.
- Note the indentation of the inner if.
- There may be code between the `{` with the first else and the second if.
Q.7 Example

• Write nested if statements that perform the following test:
 o If amount1 is greater than 10 and amount2 is less than 100, display the greater of the two

• Can you write the solution to the above problem without nested if statements?
Using nested ifs

- Write a snippet of code that will do all of the following, where x and y are integers:
 - add y to x if x == y
 - add x to y if y > x
 - add 1 to x if (2 * y) == x
Logical Operators (4.7)

- If we want to check for more than one condition then we need to use logical operators.

- These combine logical expressions (i.e. expressions that have a true/false value).

- There are three logical operators:
 - `&&` and
 - `||` or
 - `!` Not
Q.8 Examples of Logical Operators

- \(\text{if}((x > 7) \land (x < 20)) \)

- \(\text{if}((\text{temp} > 90.0) \land (\text{humidity} > 0.9)) \)

- \(\text{if}((\text{salary} < \text{minSalary}) \lor (\text{dependents} > 5)) \)
Evaluating Expressions: And &&

- $(\text{expr1}) \text{ && } (\text{expr2})$
- For the complete expression to be true, both expr1 and expr2 have to be true
- Example:

 $(\text{temp > 90.0}) \text{ && } (\text{humidity > 0.9})$

 - These are unbearable heat and humidity conditions
 - Both must be true for the entire expression to be true
Evaluating Expressions: Or \texttt{||}

- \((\text{expr1} \; \texttt{||} \; \text{expr2})\)
- The complete expression is true if either \text{expr1} or \text{expr2} is true
- Examples:
 - \((\text{salary} < \text{minSalary}) \; \texttt{||} \; (\text{dependents} > 5)\)
 - To qualify for financial aid, salary has to be less than some minimum salary or the number of dependents is greater than 5
 - Only one condition has to be true
Evaluating Expressions: Not !

- !expr
- Unary operator
- Examples:
 - !((salary < minSalary) && (dependents > 5))
 - What makes this true? False?
Q.9 Example

- Your local bookstore has asked you to write a program to help them determine the cost of shipping of customers orders. If the order is $30 or less then shipping will cost $5, if the order is over $30 then shipping will be $3
Q.10 Problem

- The bookstore has now changed its shipping policy so that
 - If the order is $30 or less, shipping is $5
 - If the order is over $30 but less than $50, shipping is $3
 - If the order is over $50 then shipping is $2
Operator Precedence

- We have now added relational, equality and logical operators to the mathematical operators that were introduced last week.
- Where do the new operators fit in the precedence table?
Precedence

<table>
<thead>
<tr>
<th>Precedence Operators</th>
<th>(Highest to Lowest)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- (unary negation), ! (Logical NOT)</td>
<td></td>
</tr>
<tr>
<td>* / %</td>
<td></td>
</tr>
<tr>
<td>- +</td>
<td></td>
</tr>
<tr>
<td><= => > <</td>
<td></td>
</tr>
<tr>
<td>== !=</td>
<td></td>
</tr>
<tr>
<td>&&</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>= += -= *= /= %=</td>
<td></td>
</tr>
</tbody>
</table>
Q.11 Expression Evaluation

- According to the operator precedence and associativity rules given on the previous slide, how will the following expressions be evaluated?

 - \(x < \text{min} + \text{max} \)
 - \(\text{min} \leq x \land x \leq \text{max} \)
 - \(!x == y + 2 \)
 - \(x = a + b \mod 7 \ast 2 \)
exit()

- To terminate a program we can use the `exit(int status)` function
 - This is a *function*, not part of the language
 - `#include <stdlib.h>`
 - The *status* is returned to the operating system to denote program success or failure
 - Success: 0
 - Failure: non-zero
Q.12 Practice

- Write a complete program that will ask the user for two integers. Display both integers to the screen if they are each greater than 1000 and terminate the program with `exit()` otherwise. Use exactly one `if/else`
Floating Point and Relational Operators

- Floating point math may not work out as you expect because of round off errors.

- In Math
 - \(6 \times \frac{2}{3} = 4 \)

- In C++, where 0.66666 is equivalent to 2/3
 - \(6.0 \times 0.66666 = \)
 - \(6.0 \times 0.66667 = \)
 - \(6.0 \times 0.666666 = \)
 - \(6.0 \times (\frac{2.0}{3.0}) = \)
Q.1 Example

definite result;

result = 6.0 * 0.666666;

if(result == 4.0)
{
 cout << “result == 4.0” << endl;
}

cout << setprecision(6) << fixed;
cout << result << endl;
cout << setprecision(2) << result;
cout << endl;
#include "stdafx.h"
#include <iostream>
#include <iomanip>
using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 double result;
 result = 6.0 * 0.666666;
 if(result == 4.0)
 {
 cout <<" TRUE, result does equal 4.0" <<endl;
 }
 cout <<setprecision(6) <<fixed<< result <<endl;
 cout <<setprecision(2) <<fixed<< result <<endl;
 return std::cin >> C:\WINDOWS\system32\cmd.exe
3.999999
4.00
Press any key to continue