Chi-squared test

- Used to compare two categorical variables
- Each categorical variable breaks our population into two or more subgroups
 Null hypothesis is that the two categorical variables are independent:
 - p-value > 0.05: Do not reject Null, i.e. the variables are independent
 - p-value <0.05: Reject null, i.e. the variables are NOT independent.
- Need to transform the data from categorical into the number of counts in each subgroup.
 - Need 80% of "expected" cell counts to be > 5
 - No cells with "expected" cell counts below 1 NOTE:R will warn you if this is not the case.

Chi-squared example: Transform

Gender	Coffee Intake
Male	3
Male	2
Female	0
Male	1
Female	1
Male	2
Female	2

	0	1	2	3
Male	0	1	2	1
Female	2	1	1	0

Does Gender impact Coffee Intake?

Problem 10.4

Question: Are gender and coffee consumption independent?

The file LipidData contains information about gender and coffee consumption

- 1. State the Null Hypothesis and the alternative hypothesis
- 2. Construct a table of counts:

table(lipidDataFrame\$Gender,lipidDataFrame\$`Coffee intake (cups/day)`)

Question: Is this data a good candidate for this test?

Problem 10.4

- 3. Run a chi-squared test:
 - > chisq.test(lipidDataFrame\$Gender,lipidDataFrame\$`Coffee intake (cups/day)`)

Pearson's Chi-squared test

data: lipidDataFrame\$Gender and lipidDataFrame\$`Coffee intake (cups/day)`
X-squared = 7.7587, df = 7, p-value = 0.3544

4. Conclusion?