R Visualizing Data

mtcars Data Frame

- R has a built-in data frame called mtcars
- Useful R functions
- length(object) \# number of variables
- str(object) \# structure of an object
- class(object) \# class or type of an object
- names(object) \# names
- dim(object) \# number of observations and variables
- In the console, call each function using mtcars as the object

mtcars Data Frame

The data was extracted from the 1974 Motor Trend US magazine,
and comprises fuel consumption and 10 aspects of automobile design
and performance for 32 automobiles (1973-74 models).

[1] mpg	Miles/(US) gallon
[2] cyl	Number of cylinders
[3] disp	Displacement (cu.in.)
[4] hp	Gross horsepower
[5] drat	Rear axle ratio
[6] wt	Weight (1000 lbs)
[7] qsec	1/4 mile time
[8] vs	V / S (vshape or straight line engine)
[9] am	Transmission ($0=$ automatic, $1=$ manual $)$
[10] gear	Number of forward gears
[11] carb	Number of carburetors

Recoding Variables

- Copy mtcars to tempMtcars to protect mtcars data > tempMtcars $=$ mtcars
- Recode am variable as amCategorical > tempMtcars\$amCategorical = as.factor (mtcars\$am)
$>$ tempMtcars\$amLabels = factor (mtcars\$am, levels=c('0','1'), labels=c("auto", "manual"))
> tempMtcars\$amOrdered = factor (mtcars\$am, levels=c('1','0'), labels=c("manual", "auto"), ordered=TRUE)
barplot(summary(tempMtcars\$amOrdered))
barplot(summary(tempMtcars\$amLabels))

table function

- The table function will return a vector of table counts
- For instance, transmission=table(tempMtcars\$am) will return a count of the number of automatic (value is 0) and manual (value is 1) transmission types

```
> transmission=table(tempMtcars$am)
> transmission
```

$0 \quad 1$
1913

Bar Chart
http://statmethods.net/graphs/bar.html

- A bar chart or bar graph is a chart that presents grouped data with rectangular bars with lengths proportional to the values that they represent.
- function table returns a vector of frequency data

Car Data
> barplot(table(tempMtcars\$amCategorical), main $=$ "Car Data",
xlab = "Transmission")

Transmission

Bar Chart cont.

- Add a label (count) to the y axis
- Set the limits of the y axis to be 0-20
- Change the colors of the bars
- Can you choose the colors of the bars?
- Change the labels on the x axis from 0, 1 to auto, manual

Recoding Variables

- Create a new variable mpgClass where $\mathrm{mpg}<=25$ is "low", $\mathrm{mpg}>25$ is "high"

```
> tempMtcars$mpgClass[tempMtcars$mpg <= 25] = "low"
> tempMtcars$mpgClass[tempMtcars$mpg > 25] = "high"
> tempMtcars$mpgClass
[1] "low" "low" "low" "low" "low" "low" "low" "low"
[9] "low" "low" "low" "low" "low" "low" "low" "low"
[17] "low" "high" "high" "high" "low" "low" "low" "low"
[25] "low" "high" "high" "high" "low" "low" "low" "low"
> typeof(tempMtcars$mpgClass)
[1] "character"
```

barplot(table(tempMtcars\$mpgClass), main = "Car Data",
xlab="MPG")

Bar Chart

> barplot (table(mtcars\$cyl),
main $=$ "Car Distribution",
xlab = "Number of Cylinders",
col = c("darkblue", "green", "red"),
names.arg = c("4 Cylinder", "6 Cylinder", "8 Cylinder"))

Car Distribution

Number of Cylinders

Pie Chart

http://statmethods.net/graphs/pie.html

- A pie chart is a circular graphical representation of data that illustrates a numerical proportion
- A pie chart gives a better visualization of the frequency of occurrence as a percent
> pie(table (mtcars\$cyl),
labels = c("4 Cylinder", "6 Cylinder", "8 Cylinder"), main="Car Distribution")

Problem

- For the given CS100 class information, create a data frame, cs100DataFrame.R that displays pie and bar chart representations of the Year data properly labeled.
ID
Year
0001 FR
Age
0002 FR
18
0003 SR
22
0004 JR
0005 SO
19
0006 FR 19
0007 SR 23
0008 SO 19
0009 SR 22

CS100 Problem Continued

Histogram

http://statmethods.net/graphs/density.html

- A histogram is a graphical representation of the distribution of numerical data
- Bin - are adjacent intervals usually of equal size
- Notice: breaks <> number of bins and breaks is just a suggestion and not guaranteed

Boxplots

http://statmethods.net/graphs/boxplot.html

- A boxplot is a way of graphically showing numerical data through quartiles
- A box-and-whisker plot is a boxplot that shows variability outside the upper and lower quartiles
- Quartile - the three points that divide the ranked data values into 4 equal sized groups

Box-and-Whisker

https://www.wellbeingatschool.org.nz/information-sheet/understanding-and-interpreting-box-plots

Quartile Definitions
 https://en.wikipedia.org/wiki/Quartile

https://www.mathsisfun.com/data/quartiles.html
http://dsearls.org/other/CalculatingQuartiles/CalculatingQuartiles.htm

- first quartile/lower quartile/25th percentile/ Q_{1}
- splits off the lowest 25% of data from the highest 75%
- second quartile /median/50th percentile / Q_{2}
- cuts data set in half
- third quartile/upper quartile/75th percentile / Q3
- splits off the highest 25% of data from the lowest 75%
- interquartile range / IQR
$-\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}$

Problem Continued

- Using R, show the box-and-whisker plot and quantiles for
$-6,7,19,20,42,100,200$
$-6,7,20,100,200$

Candy Example

Paint Problem

- Let's put everything together
- A paint manufacturer tested two experimental brands of paint over a period of months to determine how long they would last without fading. Here are the results:

BrandA	BrandB	Report on the following
10	25	-Mean
20	35	-Median
60	40	-Mode
40	45	-Std Deviation
50	35	-Minimum
30	30	-Maximum

Paint Problem

1. Using Rstudio, create an R script on your desktop called paintDataFrame.R that creates a data frame paintData for the paint data.
2. Enter the data
3. Output the data frame
4. Save and run the script. Show me.

Paint Problem Continued

5. Compute and output the mean, median, std deviation, minimum, and maximum for each brand of paint
[1] "Brand A Mean = 35"
[1] "Brand A Median = 35"
[1] "Brand A Std Dev = 18.7082869338697"
[1] "Brand A Minimum = 10"
[1] "Brand A Maximum $=60$ "
[1] "'
[1] "Brand B Mean = 35"
[1] "Brand B Median = 35"
[1] "Brand B Std Dev = 7.07106781186548"
[1] "Brand B Minimum = 25"
[1] "Brand B Maximum = 45"

Paint Problem Continued

5. Output a Box-and-Whisker

Plot for each brand of paint as follows. Get as close as possible. This isn't easy but give it a try.
6. What do the descriptive statistics tell us?
7. Which paint would you buy? Justify your answer

